{"title":"变密度磁流体动力学方程标量辅助变量格式的稳定性和时间误差估计","authors":"Han Chen, Yuyu He, Hongtao Chen","doi":"10.1002/num.23067","DOIUrl":null,"url":null,"abstract":"In this article, we construct first‐ and second‐order semidiscrete schemes for the magnetohydrodynamics (MHD) equations with variable density based on scalar auxiliary variable (SAV) approach. These schemes are decoupled, unconditionally energy stable and only solve a sequence of linear differential equations at each time step. We carry out a rigorous error analysis for the first‐order SAV scheme in two‐dimensional case. Some numerical experiments are presented to verify the accuracy and stability.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and temporal error estimate of scalar auxiliary variable schemes for the magnetohydrodynamics equations with variable density\",\"authors\":\"Han Chen, Yuyu He, Hongtao Chen\",\"doi\":\"10.1002/num.23067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we construct first‐ and second‐order semidiscrete schemes for the magnetohydrodynamics (MHD) equations with variable density based on scalar auxiliary variable (SAV) approach. These schemes are decoupled, unconditionally energy stable and only solve a sequence of linear differential equations at each time step. We carry out a rigorous error analysis for the first‐order SAV scheme in two‐dimensional case. Some numerical experiments are presented to verify the accuracy and stability.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Stability and temporal error estimate of scalar auxiliary variable schemes for the magnetohydrodynamics equations with variable density
In this article, we construct first‐ and second‐order semidiscrete schemes for the magnetohydrodynamics (MHD) equations with variable density based on scalar auxiliary variable (SAV) approach. These schemes are decoupled, unconditionally energy stable and only solve a sequence of linear differential equations at each time step. We carry out a rigorous error analysis for the first‐order SAV scheme in two‐dimensional case. Some numerical experiments are presented to verify the accuracy and stability.