彩色图混沌的泛型

Q3 Mathematics
Ram'on Barral Lij'o, Hiraku Nozawa
{"title":"彩色图混沌的泛型","authors":"Ram'on Barral Lij'o, Hiraku Nozawa","doi":"10.1515/taa-2020-0105","DOIUrl":null,"url":null,"abstract":"Abstract To each colored graph one can associate its closure in the universal space of isomorphism classes of pointed colored graphs, and this subspace can be regarded as a generalized subshift. Based on this correspondence, we introduce two definitions for chaotic (colored) graphs, one of them analogous to Devaney’s. We show the equivalence of our two novel definitions of chaos, proving their topological genericity in various subsets of the universal space.","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"9 1","pages":"37 - 52"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Genericity of chaos for colored graphs\",\"authors\":\"Ram'on Barral Lij'o, Hiraku Nozawa\",\"doi\":\"10.1515/taa-2020-0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To each colored graph one can associate its closure in the universal space of isomorphism classes of pointed colored graphs, and this subspace can be regarded as a generalized subshift. Based on this correspondence, we introduce two definitions for chaotic (colored) graphs, one of them analogous to Devaney’s. We show the equivalence of our two novel definitions of chaos, proving their topological genericity in various subsets of the universal space.\",\"PeriodicalId\":30611,\"journal\":{\"name\":\"Topological Algebra and its Applications\",\"volume\":\"9 1\",\"pages\":\"37 - 52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Algebra and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/taa-2020-0105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2020-0105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

每个彩色图都可以在点彩色图同构类的泛空间中关联它的闭包,这个子空间可以看作是一个广义子移。基于这种对应关系,我们引入了混沌(彩色)图的两个定义,其中一个类似于Devaney的定义。我们证明了混沌的两个新定义的等价性,证明了它们在泛空间的各种子集上的拓扑泛型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genericity of chaos for colored graphs
Abstract To each colored graph one can associate its closure in the universal space of isomorphism classes of pointed colored graphs, and this subspace can be regarded as a generalized subshift. Based on this correspondence, we introduce two definitions for chaotic (colored) graphs, one of them analogous to Devaney’s. We show the equivalence of our two novel definitions of chaos, proving their topological genericity in various subsets of the universal space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topological Algebra and its Applications
Topological Algebra and its Applications Mathematics-Algebra and Number Theory
CiteScore
1.20
自引率
0.00%
发文量
12
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信