Xiong Huang, Lei Zhang, Pengfei Wang, Gang Jian, Jun Yang, Bo Li, Shuhui Yu, Rong Sun, Zhen-Guo Fu, Xiuhua Cao
{"title":"超薄Ba0.97Ca0.03TiO3基MLCC优异的介电常数温度稳定性和可靠性性能","authors":"Xiong Huang, Lei Zhang, Pengfei Wang, Gang Jian, Jun Yang, Bo Li, Shuhui Yu, Rong Sun, Zhen-Guo Fu, Xiuhua Cao","doi":"10.1080/21870764.2023.2166655","DOIUrl":null,"url":null,"abstract":"ABSTRACT High-temperature stability and reliability are in high demand for ultra-thin multilayer ceramic capacitors (MLCCs), which are ubiquitous in electronic industries. Here, two doping matrices of BaTiO3 (BT) and Ba0.97Ca0.03TiO3 (BCT) are chosen to prepare ultra-thin MLCCs, whose effects on the microstructure, nonlinear dielectric properties, temperature stability, and reliability of the capacitors were investigated. Compared with BT-based MLCCs, BCT-based MLCCs possess better core-shell structures, thus, leading to a higher Schottky barrier for inhibiting carrier migration and improving aging performance. For the 1.5 μm-thickness capacitors using the BCT doping matrix rather than BT, the temperature coefficient of capacitance reaches the X7R standard, and the breakdown field increases from 148 to 172 V/μm. Moreover, the ability to resist insulation resistance degradation has been significantly improved. This work demonstrates the great potential of using BCT as the doping matrix to prepare ultra-thin MLCCs with excellent temperature stability and reliability.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"146 - 158"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Excellent permittivity-temperature stability and reliability performance of ultra-thin Ba0.97Ca0.03TiO3-based MLCCs\",\"authors\":\"Xiong Huang, Lei Zhang, Pengfei Wang, Gang Jian, Jun Yang, Bo Li, Shuhui Yu, Rong Sun, Zhen-Guo Fu, Xiuhua Cao\",\"doi\":\"10.1080/21870764.2023.2166655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT High-temperature stability and reliability are in high demand for ultra-thin multilayer ceramic capacitors (MLCCs), which are ubiquitous in electronic industries. Here, two doping matrices of BaTiO3 (BT) and Ba0.97Ca0.03TiO3 (BCT) are chosen to prepare ultra-thin MLCCs, whose effects on the microstructure, nonlinear dielectric properties, temperature stability, and reliability of the capacitors were investigated. Compared with BT-based MLCCs, BCT-based MLCCs possess better core-shell structures, thus, leading to a higher Schottky barrier for inhibiting carrier migration and improving aging performance. For the 1.5 μm-thickness capacitors using the BCT doping matrix rather than BT, the temperature coefficient of capacitance reaches the X7R standard, and the breakdown field increases from 148 to 172 V/μm. Moreover, the ability to resist insulation resistance degradation has been significantly improved. This work demonstrates the great potential of using BCT as the doping matrix to prepare ultra-thin MLCCs with excellent temperature stability and reliability.\",\"PeriodicalId\":15130,\"journal\":{\"name\":\"Journal of Asian Ceramic Societies\",\"volume\":\"11 1\",\"pages\":\"146 - 158\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Ceramic Societies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21870764.2023.2166655\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Ceramic Societies","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21870764.2023.2166655","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Excellent permittivity-temperature stability and reliability performance of ultra-thin Ba0.97Ca0.03TiO3-based MLCCs
ABSTRACT High-temperature stability and reliability are in high demand for ultra-thin multilayer ceramic capacitors (MLCCs), which are ubiquitous in electronic industries. Here, two doping matrices of BaTiO3 (BT) and Ba0.97Ca0.03TiO3 (BCT) are chosen to prepare ultra-thin MLCCs, whose effects on the microstructure, nonlinear dielectric properties, temperature stability, and reliability of the capacitors were investigated. Compared with BT-based MLCCs, BCT-based MLCCs possess better core-shell structures, thus, leading to a higher Schottky barrier for inhibiting carrier migration and improving aging performance. For the 1.5 μm-thickness capacitors using the BCT doping matrix rather than BT, the temperature coefficient of capacitance reaches the X7R standard, and the breakdown field increases from 148 to 172 V/μm. Moreover, the ability to resist insulation resistance degradation has been significantly improved. This work demonstrates the great potential of using BCT as the doping matrix to prepare ultra-thin MLCCs with excellent temperature stability and reliability.
期刊介绍:
The Journal of Asian Ceramic Societies is an open access journal publishing papers documenting original research and reviews covering all aspects of science and technology of Ceramics, Glasses, Composites, and related materials. These papers include experimental and theoretical aspects emphasizing basic science, processing, microstructure, characteristics, and functionality of ceramic materials. The journal publishes high quality full papers, letters for rapid publication, and in-depth review articles. All papers are subjected to a fair peer-review process.