太阳大气模拟中的辐射流体动力学

IF 20.9 1区 物理与天体物理
Jorrit Leenaarts
{"title":"太阳大气模拟中的辐射流体动力学","authors":"Jorrit Leenaarts","doi":"10.1007/s41116-020-0024-x","DOIUrl":null,"url":null,"abstract":"<p>Nearly all energy generated by fusion in the solar core is ultimately radiated away into space in the solar atmosphere, while the remaining energy is carried away in the form of neutrinos. The exchange of energy between the solar gas and the radiation field is thus an essential ingredient of atmospheric modeling. The equations describing these interactions are known, but their solution is so computationally expensive that they can only be solved in approximate form in multi-dimensional radiation-MHD modeling. In this review, I discuss the most commonly used approximations for energy exchange between gas and radiation in the photosphere, chromosphere, and corona.</p>","PeriodicalId":49147,"journal":{"name":"Living Reviews in Solar Physics","volume":"17 1","pages":""},"PeriodicalIF":20.9000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41116-020-0024-x","citationCount":"20","resultStr":"{\"title\":\"Radiation hydrodynamics in simulations of the solar atmosphere\",\"authors\":\"Jorrit Leenaarts\",\"doi\":\"10.1007/s41116-020-0024-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nearly all energy generated by fusion in the solar core is ultimately radiated away into space in the solar atmosphere, while the remaining energy is carried away in the form of neutrinos. The exchange of energy between the solar gas and the radiation field is thus an essential ingredient of atmospheric modeling. The equations describing these interactions are known, but their solution is so computationally expensive that they can only be solved in approximate form in multi-dimensional radiation-MHD modeling. In this review, I discuss the most commonly used approximations for energy exchange between gas and radiation in the photosphere, chromosphere, and corona.</p>\",\"PeriodicalId\":49147,\"journal\":{\"name\":\"Living Reviews in Solar Physics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":20.9000,\"publicationDate\":\"2020-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41116-020-0024-x\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Living Reviews in Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41116-020-0024-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s41116-020-0024-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

太阳核心聚变产生的几乎所有能量最终都被辐射到太阳大气中的太空中,而剩余的能量则以中微子的形式被带走。因此,太阳气体和辐射场之间的能量交换是大气模拟的重要组成部分。描述这些相互作用的方程是已知的,但它们的解在计算上是如此昂贵,以至于它们只能在多维辐射mhd模型中以近似形式求解。在这篇综述中,我讨论了光球、色球和日冕中气体和辐射之间能量交换的最常用的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Radiation hydrodynamics in simulations of the solar atmosphere

Radiation hydrodynamics in simulations of the solar atmosphere

Nearly all energy generated by fusion in the solar core is ultimately radiated away into space in the solar atmosphere, while the remaining energy is carried away in the form of neutrinos. The exchange of energy between the solar gas and the radiation field is thus an essential ingredient of atmospheric modeling. The equations describing these interactions are known, but their solution is so computationally expensive that they can only be solved in approximate form in multi-dimensional radiation-MHD modeling. In this review, I discuss the most commonly used approximations for energy exchange between gas and radiation in the photosphere, chromosphere, and corona.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Living Reviews in Solar Physics
Living Reviews in Solar Physics ASTRONOMY & ASTROPHYSICS-
自引率
1.40%
发文量
3
期刊介绍: Living Reviews in Solar Physics, a platinum open-access journal, publishes invited reviews covering research across all areas of solar and heliospheric physics. It distinguishes itself by maintaining a collection of high-quality reviews regularly updated by the authors. Established in 2004, it was founded by the Max Planck Institute for Solar System Research (MPS). "Living Reviews®" is a registered trademark of Springer International Publishing AG.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信