二重积分的加权Cebysev型不等式及其应用

Q4 Mathematics
Asif R Khan, Hira Nasir, Syed Sikander Shirazi
{"title":"二重积分的加权Cebysev型不等式及其应用","authors":"Asif R Khan, Hira Nasir, Syed Sikander Shirazi","doi":"10.22130/SCMA.2021.129537.815","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to generalize Cebysev type inequalities for double integrals involving a weight function.By using an integral transform that is a weighted Montgomery identity, we obtained a generalized form of weighted Cebysev type inequalities in $L_m,, mgeq 1$ norm of differentiable functions. Also, we give some applications of the probability density function.","PeriodicalId":38924,"journal":{"name":"Communications in Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Cebysev Type Inequalities for Double Integrals and Application\",\"authors\":\"Asif R Khan, Hira Nasir, Syed Sikander Shirazi\",\"doi\":\"10.22130/SCMA.2021.129537.815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to generalize Cebysev type inequalities for double integrals involving a weight function.By using an integral transform that is a weighted Montgomery identity, we obtained a generalized form of weighted Cebysev type inequalities in $L_m,, mgeq 1$ norm of differentiable functions. Also, we give some applications of the probability density function.\",\"PeriodicalId\":38924,\"journal\":{\"name\":\"Communications in Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22130/SCMA.2021.129537.815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22130/SCMA.2021.129537.815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是推广涉及权函数的二重积分的Cebysev型不等式。利用一个加权Montgomery恒等式的积分变换,得到了可微函数$L_m,, mgeq 1$范数中的加权Cebysev型不等式的广义形式。同时,给出了概率密度函数的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted Cebysev Type Inequalities for Double Integrals and Application
The purpose of this article is to generalize Cebysev type inequalities for double integrals involving a weight function.By using an integral transform that is a weighted Montgomery identity, we obtained a generalized form of weighted Cebysev type inequalities in $L_m,, mgeq 1$ norm of differentiable functions. Also, we give some applications of the probability density function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Analysis
Communications in Mathematical Analysis Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信