群图的莫尔斯边界的连通分量

IF 0.7 3区 数学 Q2 MATHEMATICS
Elia Fioravanti, Annette Karrer
{"title":"群图的莫尔斯边界的连通分量","authors":"Elia Fioravanti, Annette Karrer","doi":"10.2140/pjm.2022.317.339","DOIUrl":null,"url":null,"abstract":"Let a finitely generated group $G$ split as a graph of groups. If edge groups are undistorted and do not contribute to the Morse boundary $\\partial_MG$, we show that every connected component of $\\partial_MG$ with at least two points originates from the Morse boundary of a vertex group. Under stronger assumptions on the edge groups (such as wideness in the sense of Dru\\c{t}u-Sapir), we show that Morse boundaries of vertex groups are topologically embedded in $\\partial_MG$.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Connected components of Morse boundaries of graphs of groups\",\"authors\":\"Elia Fioravanti, Annette Karrer\",\"doi\":\"10.2140/pjm.2022.317.339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let a finitely generated group $G$ split as a graph of groups. If edge groups are undistorted and do not contribute to the Morse boundary $\\\\partial_MG$, we show that every connected component of $\\\\partial_MG$ with at least two points originates from the Morse boundary of a vertex group. Under stronger assumptions on the edge groups (such as wideness in the sense of Dru\\\\c{t}u-Sapir), we show that Morse boundaries of vertex groups are topologically embedded in $\\\\partial_MG$.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.317.339\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.317.339","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设一个有限生成的群$G$分裂为群的图。如果边群未变形且不构成Morse边界$\partial_MG$,我们证明了$\partial_MG$中每一个至少有两个点的连通分量都起源于顶点群的Morse边界。在更强的边群假设下(如Dru\c{t}u-Sapir意义上的宽度),我们证明了顶点群的Morse边界拓扑嵌入在$\partial_MG$中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connected components of Morse boundaries of graphs of groups
Let a finitely generated group $G$ split as a graph of groups. If edge groups are undistorted and do not contribute to the Morse boundary $\partial_MG$, we show that every connected component of $\partial_MG$ with at least two points originates from the Morse boundary of a vertex group. Under stronger assumptions on the edge groups (such as wideness in the sense of Dru\c{t}u-Sapir), we show that Morse boundaries of vertex groups are topologically embedded in $\partial_MG$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信