冻干LAMP和RT-PCR反应混合物检测结核的优化

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
Esra Ağel, Hasan Sağcan
{"title":"冻干LAMP和RT-PCR反应混合物检测结核的优化","authors":"Esra Ağel, Hasan Sağcan","doi":"10.2478/ebtj-2020-0027","DOIUrl":null,"url":null,"abstract":"Abstract Undoubtedly, one of the most infectious diseases in the world is tuberculosis. Key factor for tuberculosis control is to prevent possible contagion with rapid diagnosis and effective treatment. The culture method, which it takes several weeks to obtain results, is the gold standard method for laboratory diagnosis of tuberculosis. In order to prevent possible contagion of tuberculosis, diagnosis must be made in short time and treatment should be started as soon as possible. Normally, clinical samples are studied in advanced laboratories designed for this purpose. However, especially after the screening in rural areas, the transmission of the samples to the centers has many negative effects on the clinical material. Therefore, the latest trend molecular techniques in microbiological diagnosis are developing into point of care systems that can be applied in the field without laboratory infrastructure. The major challenge for molecular-based point-of-care tests is the need to store polymerase enzymes and some of the ingredients used in the cold chain. The aim of this study is to increase the resistance of the amplification reaction mixtures by lyophilizing the tuberculosis diagnosis. Lyophilization was performed on Loop-mediated isothermal amplification (LAMP) and Real-time PCR mixtures. For the lyophilization of LAMP and RT-PCR mixtures, two different experimental setups were tried from the literature except for the developed content. Chemicals such as stachyose, trehalose, glycerol and PEG 8000 are widely using as cryoprotectants. As a result, the developed content (0.5% PEG 8000, 2.0 % Stachyose) was determined the best cryoprotectant mixture. Accordingly, amplification mixtures can be produced with the developed lyophilization method and point of care kits can be developed.","PeriodicalId":22379,"journal":{"name":"The EuroBiotech Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Lyophilized LAMP and RT-PCR Reaction Mixes for Detection of Tuberculosis\",\"authors\":\"Esra Ağel, Hasan Sağcan\",\"doi\":\"10.2478/ebtj-2020-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Undoubtedly, one of the most infectious diseases in the world is tuberculosis. Key factor for tuberculosis control is to prevent possible contagion with rapid diagnosis and effective treatment. The culture method, which it takes several weeks to obtain results, is the gold standard method for laboratory diagnosis of tuberculosis. In order to prevent possible contagion of tuberculosis, diagnosis must be made in short time and treatment should be started as soon as possible. Normally, clinical samples are studied in advanced laboratories designed for this purpose. However, especially after the screening in rural areas, the transmission of the samples to the centers has many negative effects on the clinical material. Therefore, the latest trend molecular techniques in microbiological diagnosis are developing into point of care systems that can be applied in the field without laboratory infrastructure. The major challenge for molecular-based point-of-care tests is the need to store polymerase enzymes and some of the ingredients used in the cold chain. The aim of this study is to increase the resistance of the amplification reaction mixtures by lyophilizing the tuberculosis diagnosis. Lyophilization was performed on Loop-mediated isothermal amplification (LAMP) and Real-time PCR mixtures. For the lyophilization of LAMP and RT-PCR mixtures, two different experimental setups were tried from the literature except for the developed content. Chemicals such as stachyose, trehalose, glycerol and PEG 8000 are widely using as cryoprotectants. As a result, the developed content (0.5% PEG 8000, 2.0 % Stachyose) was determined the best cryoprotectant mixture. Accordingly, amplification mixtures can be produced with the developed lyophilization method and point of care kits can be developed.\",\"PeriodicalId\":22379,\"journal\":{\"name\":\"The EuroBiotech Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EuroBiotech Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ebtj-2020-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EuroBiotech Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ebtj-2020-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要毫无疑问,结核病是世界上最具传染性的疾病之一。结核病控制的关键因素是通过快速诊断和有效治疗来预防可能的传染病。培养法需要数周才能得出结果,是实验室诊断结核病的金标准方法。为了防止肺结核的可能传染,必须在短时间内做出诊断,并尽快开始治疗。通常情况下,临床样本在为此目的设计的高级实验室中进行研究。然而,特别是在农村地区进行筛查后,将样本传播到中心对临床材料产生了许多负面影响。因此,微生物诊断的最新趋势分子技术正在发展成为无需实验室基础设施即可应用于现场的护理点系统。基于分子的护理点测试的主要挑战是需要储存聚合酶和冷链中使用的一些成分。本研究的目的是通过冷冻干燥结核诊断来增加扩增反应混合物的耐药性。在环介导的等温扩增(LAMP)和实时PCR混合物上进行冷冻。对于LAMP和RT-PCR混合物的冷冻干燥,除了开发的内容外,从文献中尝试了两种不同的实验装置。水苏糖、海藻糖、甘油和PEG 8000等化学品被广泛用作冷冻保护剂。结果,开发的含量(0.5%PEG8000,2.0%水苏糖)被确定为最佳冷冻保护剂混合物。因此,可以用开发的冷冻干燥方法生产扩增混合物,并可以开发护理点试剂盒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Lyophilized LAMP and RT-PCR Reaction Mixes for Detection of Tuberculosis
Abstract Undoubtedly, one of the most infectious diseases in the world is tuberculosis. Key factor for tuberculosis control is to prevent possible contagion with rapid diagnosis and effective treatment. The culture method, which it takes several weeks to obtain results, is the gold standard method for laboratory diagnosis of tuberculosis. In order to prevent possible contagion of tuberculosis, diagnosis must be made in short time and treatment should be started as soon as possible. Normally, clinical samples are studied in advanced laboratories designed for this purpose. However, especially after the screening in rural areas, the transmission of the samples to the centers has many negative effects on the clinical material. Therefore, the latest trend molecular techniques in microbiological diagnosis are developing into point of care systems that can be applied in the field without laboratory infrastructure. The major challenge for molecular-based point-of-care tests is the need to store polymerase enzymes and some of the ingredients used in the cold chain. The aim of this study is to increase the resistance of the amplification reaction mixtures by lyophilizing the tuberculosis diagnosis. Lyophilization was performed on Loop-mediated isothermal amplification (LAMP) and Real-time PCR mixtures. For the lyophilization of LAMP and RT-PCR mixtures, two different experimental setups were tried from the literature except for the developed content. Chemicals such as stachyose, trehalose, glycerol and PEG 8000 are widely using as cryoprotectants. As a result, the developed content (0.5% PEG 8000, 2.0 % Stachyose) was determined the best cryoprotectant mixture. Accordingly, amplification mixtures can be produced with the developed lyophilization method and point of care kits can be developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The EuroBiotech Journal
The EuroBiotech Journal Agricultural and Biological Sciences-Food Science
CiteScore
3.60
自引率
0.00%
发文量
17
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信