罗德里格斯-汉密尔顿参数下刚体的相对论旋转:拉格朗日函数和运动方程

IF 0.7 Q4 ASTRONOMY & ASTROPHYSICS
V. Pashkevich, G. Eroshkin
{"title":"罗德里格斯-汉密尔顿参数下刚体的相对论旋转:拉格朗日函数和运动方程","authors":"V. Pashkevich, G. Eroshkin","doi":"10.2478/arsa-2018-0008","DOIUrl":null,"url":null,"abstract":"Abstract The main purposes of this research are to obtain Lagrange function for the relativistic rotation of the rigid body, which is generated by metric properties of Riemann space of general relativity and to derive the differential equations, determining the rigid body rotation in the terms of the Rodrigues - Hamilton parameters. The Lagrange function for the relativistic rotation of the rigid body is derived from the Lagrange function of the nonrotation point of masses system in the relativistic approximation.","PeriodicalId":43216,"journal":{"name":"Artificial Satellites-Journal of Planetary Geodesy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Relativistic Rotation of the Rigid Body in the Rodrigues – Hamilton Parameters: Lagrange Function and Equations of Motion\",\"authors\":\"V. Pashkevich, G. Eroshkin\",\"doi\":\"10.2478/arsa-2018-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main purposes of this research are to obtain Lagrange function for the relativistic rotation of the rigid body, which is generated by metric properties of Riemann space of general relativity and to derive the differential equations, determining the rigid body rotation in the terms of the Rodrigues - Hamilton parameters. The Lagrange function for the relativistic rotation of the rigid body is derived from the Lagrange function of the nonrotation point of masses system in the relativistic approximation.\",\"PeriodicalId\":43216,\"journal\":{\"name\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/arsa-2018-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Satellites-Journal of Planetary Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/arsa-2018-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要本研究的主要目的是利用广义相对论黎曼空间的度量性质得到刚体相对论性旋转的拉格朗日函数,并推导出用Rodrigues - Hamilton参数确定刚体旋转的微分方程。刚体相对论性旋转的拉格朗日函数是由相对论性近似中质量系统非旋转点的拉格朗日函数导出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relativistic Rotation of the Rigid Body in the Rodrigues – Hamilton Parameters: Lagrange Function and Equations of Motion
Abstract The main purposes of this research are to obtain Lagrange function for the relativistic rotation of the rigid body, which is generated by metric properties of Riemann space of general relativity and to derive the differential equations, determining the rigid body rotation in the terms of the Rodrigues - Hamilton parameters. The Lagrange function for the relativistic rotation of the rigid body is derived from the Lagrange function of the nonrotation point of masses system in the relativistic approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
11.10%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信