(λ,n)稳定0-1矩阵的精确界。

IF 0.6 Q3 MATHEMATICS
T. C. Bruen
{"title":"(λ,n)稳定0-1矩阵的精确界。","authors":"T. C. Bruen","doi":"10.22108/TOC.2020.120320.1692","DOIUrl":null,"url":null,"abstract":"Consider a v × v (0, 1) matrix A with exactly k ones in each row and each column. A is (λ, n)–stable, if it does not contain any λ × n submatrix with exactly one 0. If A is (λ, n)–stable, λ, n ≥ 2, then under suitable conditions on A, v ≥ k k(n−1)+(λ−2) . The case n λ−2 of equality leads to new and substantive connections with block designs. The previous bound and characterization of (λ, 2)–stable matrices follows immediately as a special case.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"9 1","pages":"171-180"},"PeriodicalIF":0.6000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact bounds for (λ,n)–stable 0-1 matrices.\",\"authors\":\"T. C. Bruen\",\"doi\":\"10.22108/TOC.2020.120320.1692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a v × v (0, 1) matrix A with exactly k ones in each row and each column. A is (λ, n)–stable, if it does not contain any λ × n submatrix with exactly one 0. If A is (λ, n)–stable, λ, n ≥ 2, then under suitable conditions on A, v ≥ k k(n−1)+(λ−2) . The case n λ−2 of equality leads to new and substantive connections with block designs. The previous bound and characterization of (λ, 2)–stable matrices follows immediately as a special case.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"9 1\",\"pages\":\"171-180\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2020.120320.1692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.120320.1692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个v × v(0,1)矩阵a,每一行和每一列恰好有k个1。A是(λ, n)稳定的,如果它不包含刚好有一个0的λ × n子矩阵。若A是(λ, n)稳定的,λ, n≥2,则在适当条件下,A上v≥k k(n−1)+(λ−2)。n λ−2相等的情况导致了与块设计的新的和实质性的联系。(λ, 2)稳定矩阵的上一个界和性质作为一种特殊情况紧随其后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact bounds for (λ,n)–stable 0-1 matrices.
Consider a v × v (0, 1) matrix A with exactly k ones in each row and each column. A is (λ, n)–stable, if it does not contain any λ × n submatrix with exactly one 0. If A is (λ, n)–stable, λ, n ≥ 2, then under suitable conditions on A, v ≥ k k(n−1)+(λ−2) . The case n λ−2 of equality leads to new and substantive connections with block designs. The previous bound and characterization of (λ, 2)–stable matrices follows immediately as a special case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信