一类二阶高阶导数微分方程的周期解

R. Butris, Noori Raad Noori
{"title":"一类二阶高阶导数微分方程的周期解","authors":"R. Butris, Noori Raad Noori","doi":"10.56327/ijiscs.v6i2.1224","DOIUrl":null,"url":null,"abstract":"The study deals with the existence, uniqueness, and stability of periodic solution of a second order of differential equations with higher derivatives. We provide a wide range of qualifications including the numerical-analytic method has been used by the Samoilenko method to investigate the existence and approximation of periodic solutions of nonlinear systems of the differential equations. We give an appropriate solutions of the problem, and extend the results of Shlapak to more general cases by assuming the weaker conditions for the functions ","PeriodicalId":32370,"journal":{"name":"IJISCS International Journal of Information System and Computer Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PERIODIC SOLUTION OF A SECOND ORDER OF DIFFERENTIAL EQUATIONS WITH HIGHER DERIVATIVES\",\"authors\":\"R. Butris, Noori Raad Noori\",\"doi\":\"10.56327/ijiscs.v6i2.1224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study deals with the existence, uniqueness, and stability of periodic solution of a second order of differential equations with higher derivatives. We provide a wide range of qualifications including the numerical-analytic method has been used by the Samoilenko method to investigate the existence and approximation of periodic solutions of nonlinear systems of the differential equations. We give an appropriate solutions of the problem, and extend the results of Shlapak to more general cases by assuming the weaker conditions for the functions \",\"PeriodicalId\":32370,\"journal\":{\"name\":\"IJISCS International Journal of Information System and Computer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJISCS International Journal of Information System and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56327/ijiscs.v6i2.1224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJISCS International Journal of Information System and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56327/ijiscs.v6i2.1224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类二阶高阶微分方程周期解的存在性、唯一性和稳定性。我们提供了广泛的限定条件,包括Samoilenko方法所使用的数值解析方法来研究微分方程非线性系统周期解的存在性和逼近性。我们给出了问题的一个适当解,并通过对函数的弱条件的假设,将Shlapak的结果推广到更一般的情况
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERIODIC SOLUTION OF A SECOND ORDER OF DIFFERENTIAL EQUATIONS WITH HIGHER DERIVATIVES
The study deals with the existence, uniqueness, and stability of periodic solution of a second order of differential equations with higher derivatives. We provide a wide range of qualifications including the numerical-analytic method has been used by the Samoilenko method to investigate the existence and approximation of periodic solutions of nonlinear systems of the differential equations. We give an appropriate solutions of the problem, and extend the results of Shlapak to more general cases by assuming the weaker conditions for the functions 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信