{"title":"有界域上的MHD方程","authors":"M. Kania","doi":"10.2478/amsil-2021-0008","DOIUrl":null,"url":null,"abstract":"Abstract We consider the MHD system in a bounded domain Ω ⊂ ℝN, N = 2; 3, with Dirichlet boundary conditions. Using Dan Henry’s semigroup approach and Giga–Miyakawa estimates we construct global in time, unique solutions to fractional approximations of the MHD system in the base space (L2(Ω ))N × (L2(Ω ))N. Solutions to MHD system are obtained next as a limits of that fractional approximations.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"35 1","pages":"211 - 235"},"PeriodicalIF":0.4000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MHD Equations in a Bounded Domain\",\"authors\":\"M. Kania\",\"doi\":\"10.2478/amsil-2021-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the MHD system in a bounded domain Ω ⊂ ℝN, N = 2; 3, with Dirichlet boundary conditions. Using Dan Henry’s semigroup approach and Giga–Miyakawa estimates we construct global in time, unique solutions to fractional approximations of the MHD system in the base space (L2(Ω ))N × (L2(Ω ))N. Solutions to MHD system are obtained next as a limits of that fractional approximations.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"35 1\",\"pages\":\"211 - 235\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2021-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2021-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑有界域上的MHD系统Ω∧∈N, N = 2;3、具有狄利克雷边界条件。使用Dan Henry的半群方法和Giga-Miyakawa估计,我们构建了MHD系统在基空间(L2(Ω))N × (L2(Ω))N中的分数近似的全局时间唯一解。作为分数阶近似的极限,得到了MHD系统的解。
Abstract We consider the MHD system in a bounded domain Ω ⊂ ℝN, N = 2; 3, with Dirichlet boundary conditions. Using Dan Henry’s semigroup approach and Giga–Miyakawa estimates we construct global in time, unique solutions to fractional approximations of the MHD system in the base space (L2(Ω ))N × (L2(Ω ))N. Solutions to MHD system are obtained next as a limits of that fractional approximations.