{"title":"Dirichlet边界条件下(p(x),q(x))-拉普拉斯算子驱动双相问题的弱解","authors":"Mohamed El Ouaarabi, C. Allalou, S. Melliani","doi":"10.5269/bspm.62182","DOIUrl":null,"url":null,"abstract":"In the present paper, in view of the topological degree methods and the theory of the variable exponent Sobolev spaces, we discuss a Dirichlet boundary value problem for elliptic equations involving the $(p(x),q(x))$-Laplacian operator with a reaction term depending on the gradient and on two real parameters. Under certain assumptions, we establish the existence of at least one weak solution to this problem. Our results extends some recent work in the literature.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Weak solutions for double phase problem driven by the (p(x),q(x))-Laplacian operator under Dirichlet boundary conditions\",\"authors\":\"Mohamed El Ouaarabi, C. Allalou, S. Melliani\",\"doi\":\"10.5269/bspm.62182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, in view of the topological degree methods and the theory of the variable exponent Sobolev spaces, we discuss a Dirichlet boundary value problem for elliptic equations involving the $(p(x),q(x))$-Laplacian operator with a reaction term depending on the gradient and on two real parameters. Under certain assumptions, we establish the existence of at least one weak solution to this problem. Our results extends some recent work in the literature.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.62182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.62182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Weak solutions for double phase problem driven by the (p(x),q(x))-Laplacian operator under Dirichlet boundary conditions
In the present paper, in view of the topological degree methods and the theory of the variable exponent Sobolev spaces, we discuss a Dirichlet boundary value problem for elliptic equations involving the $(p(x),q(x))$-Laplacian operator with a reaction term depending on the gradient and on two real parameters. Under certain assumptions, we establish the existence of at least one weak solution to this problem. Our results extends some recent work in the literature.