Dirichlet边界条件下(p(x),q(x))-拉普拉斯算子驱动双相问题的弱解

IF 0.4 Q4 MATHEMATICS
Mohamed El Ouaarabi, C. Allalou, S. Melliani
{"title":"Dirichlet边界条件下(p(x),q(x))-拉普拉斯算子驱动双相问题的弱解","authors":"Mohamed El Ouaarabi, C. Allalou, S. Melliani","doi":"10.5269/bspm.62182","DOIUrl":null,"url":null,"abstract":"In the present paper, in view of the topological degree methods and the theory of the variable exponent Sobolev spaces, we discuss a Dirichlet boundary value problem for elliptic equations involving the $(p(x),q(x))$-Laplacian operator with a reaction term depending on the gradient and on two real parameters. Under certain assumptions, we establish the existence of at least one weak solution to this problem. Our results extends some recent work in the literature.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Weak solutions for double phase problem driven by the (p(x),q(x))-Laplacian operator under Dirichlet boundary conditions\",\"authors\":\"Mohamed El Ouaarabi, C. Allalou, S. Melliani\",\"doi\":\"10.5269/bspm.62182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, in view of the topological degree methods and the theory of the variable exponent Sobolev spaces, we discuss a Dirichlet boundary value problem for elliptic equations involving the $(p(x),q(x))$-Laplacian operator with a reaction term depending on the gradient and on two real parameters. Under certain assumptions, we establish the existence of at least one weak solution to this problem. Our results extends some recent work in the literature.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.62182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.62182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文从拓扑度方法和变指数Sobolev空间理论出发,讨论了一类含有$(p(x),q(x))$-拉普拉斯算子的椭圆型方程的Dirichlet边值问题,该算子的反应项依赖于梯度和两个实参数。在一定的假设条件下,我们建立了这个问题的至少一个弱解的存在性。我们的研究结果扩展了最近文献中的一些工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak solutions for double phase problem driven by the (p(x),q(x))-Laplacian operator under Dirichlet boundary conditions
In the present paper, in view of the topological degree methods and the theory of the variable exponent Sobolev spaces, we discuss a Dirichlet boundary value problem for elliptic equations involving the $(p(x),q(x))$-Laplacian operator with a reaction term depending on the gradient and on two real parameters. Under certain assumptions, we establish the existence of at least one weak solution to this problem. Our results extends some recent work in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信