退化矫顽力各向异性Neumann问题的弱解和重整化解

IF 0.4 Q4 MATHEMATICS
M. B. Benboubker, Hayat Benkhalou, H. Hjiaj
{"title":"退化矫顽力各向异性Neumann问题的弱解和重整化解","authors":"M. B. Benboubker, Hayat Benkhalou, H. Hjiaj","doi":"10.5269/bspm.62362","DOIUrl":null,"url":null,"abstract":"In this work, we study the following quasilinear Neumann boundary-value problem$$\\left\\{\\begin{array}{ll}\\displaystyle -\\sum^{N}_{i=1} D^{i}(a_{i}(x,u,\\nabla u))+|u|^{p_{0}-2} u= f(x,u,\\nabla u) & \\mbox{in } \\ \\quad \\Omega,\\\\\\displaystyle \\sum^{N}_{i=1} a_{i}(x,u,\\nabla u)\\cdot n_{i} = g(x) & \\mbox{on } \\ \\quad \\partial\\Omega,\\end{array}\\right.$$where $\\Omega$ is a bounded open domain in $\\>I\\!\\!R^{N}$, $(N\\geq 2)$. We prove the existence of a weak solution for $f \\in L^{\\infty}(\\Omega)$ and $g\\in L^{\\infty}(\\partial\\Omega)$ and the existence of renormalized solutions for $L^{1}$-data $f$ and $g$. The functional setting involves anisotropic Sobolev spaces with constants exponents.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak and renormalized solutions for anisotropic Neumann problems with degenerate coercivity\",\"authors\":\"M. B. Benboubker, Hayat Benkhalou, H. Hjiaj\",\"doi\":\"10.5269/bspm.62362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the following quasilinear Neumann boundary-value problem$$\\\\left\\\\{\\\\begin{array}{ll}\\\\displaystyle -\\\\sum^{N}_{i=1} D^{i}(a_{i}(x,u,\\\\nabla u))+|u|^{p_{0}-2} u= f(x,u,\\\\nabla u) & \\\\mbox{in } \\\\ \\\\quad \\\\Omega,\\\\\\\\\\\\displaystyle \\\\sum^{N}_{i=1} a_{i}(x,u,\\\\nabla u)\\\\cdot n_{i} = g(x) & \\\\mbox{on } \\\\ \\\\quad \\\\partial\\\\Omega,\\\\end{array}\\\\right.$$where $\\\\Omega$ is a bounded open domain in $\\\\>I\\\\!\\\\!R^{N}$, $(N\\\\geq 2)$. We prove the existence of a weak solution for $f \\\\in L^{\\\\infty}(\\\\Omega)$ and $g\\\\in L^{\\\\infty}(\\\\partial\\\\Omega)$ and the existence of renormalized solutions for $L^{1}$-data $f$ and $g$. The functional setting involves anisotropic Sobolev spaces with constants exponents.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.62362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.62362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究以下拟线性Neumann边值问题$$\left\{\begin{array}{ll}\displaystyle -\sum^{N}_{i=1} D^{i}(a_{i}(x,u,\nabla u))+|u|^{p_{0}-2} u= f(x,u,\nabla u) & \mbox{in } \ \quad \Omega,\\\displaystyle \sum^{N}_{i=1} a_{i}(x,u,\nabla u)\cdot n_{i} = g(x) & \mbox{on } \ \quad \partial\Omega,\end{array}\right.$$,其中$\Omega$是$\>I\!\!R^{N}$, $(N\geq 2)$中的有界开域。我们证明了$f \in L^{\infty}(\Omega)$和$g\in L^{\infty}(\partial\Omega)$的弱解的存在性,以及$L^{1}$ -data $f$和$g$的重整解的存在性。函数设置涉及具有常数指数的各向异性Sobolev空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak and renormalized solutions for anisotropic Neumann problems with degenerate coercivity
In this work, we study the following quasilinear Neumann boundary-value problem$$\left\{\begin{array}{ll}\displaystyle -\sum^{N}_{i=1} D^{i}(a_{i}(x,u,\nabla u))+|u|^{p_{0}-2} u= f(x,u,\nabla u) & \mbox{in } \ \quad \Omega,\\\displaystyle \sum^{N}_{i=1} a_{i}(x,u,\nabla u)\cdot n_{i} = g(x) & \mbox{on } \ \quad \partial\Omega,\end{array}\right.$$where $\Omega$ is a bounded open domain in $\>I\!\!R^{N}$, $(N\geq 2)$. We prove the existence of a weak solution for $f \in L^{\infty}(\Omega)$ and $g\in L^{\infty}(\partial\Omega)$ and the existence of renormalized solutions for $L^{1}$-data $f$ and $g$. The functional setting involves anisotropic Sobolev spaces with constants exponents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信