高速铁路再生制动谐波特性及负序分析

Q4 Engineering
Haigang Zhang, Haoqiang Zhou, Decheng Zhao, Song Zeng, Zizhuo Wang, Jianpeng Zhu, Bulai Wang, Heng Wan
{"title":"高速铁路再生制动谐波特性及负序分析","authors":"Haigang Zhang, Haoqiang Zhou, Decheng Zhao, Song Zeng, Zizhuo Wang, Jianpeng Zhu, Bulai Wang, Heng Wan","doi":"10.2174/2212797616666230612162748","DOIUrl":null,"url":null,"abstract":"\n\nThe traction power supply system (TPSS) of railways mainly focuses on power quality analysis. In the study of harmonic and negative order currents, many literature analysis are not specific enough, there is a lack of completeness in the simulation system.\n\n\n\nAnalyze the influence of harmonic and negative sequences of TPSS on the system circuit, and realize intelligent recognition for different working conditions.\n\n\n\nThe converter is designed based on the transient direct current control technology and the harmonic model of grid-side regenerative braking is established. According to the parameters of CRH2 (CRH380AL) locomotive, the EMU model is built and run in the TPSS for joint simulation. The availability of the model is verified by combining the harmonic content and voltage level. Then, the distribution of negative sequence current under the no-load, traction and regenerative braking conditions of the system is analyzed in detail, and the negative sequence characteristic waveform under various conditions is obtained, so as to obtain the variation law of negative sequence current under different conditions.\n\n\n\nUnder the regenerative braking condition, the current harmonic distortion is much higher than that under the traction condition. From the analysis of voltage and current phase, the power factor of regenerative braking is also small. In the negative sequence analysis, the tip negative sequence current impact phenomenon occurs mostly during the traction operation of the train, while the current impact effect is weakened during regenerative braking, but the amplitude of the negative sequence fluctuation shows an increasing trend.\n\n\n\nThe energy generated by regenerative braking will be utilized by the locomotive under traction, and these bad electric energies will have extremely adverse effects on the process of high-speed train receiving and changing current. These negative sequence analysis results can be used to identify and classify different working conditions and divide and conquer energy compensation actions to achieve energy saving and consumption reduction.\n","PeriodicalId":39169,"journal":{"name":"Recent Patents on Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic Characteristics and Negative Sequence Analysis of Regenerative Braking for High-speed Railway\",\"authors\":\"Haigang Zhang, Haoqiang Zhou, Decheng Zhao, Song Zeng, Zizhuo Wang, Jianpeng Zhu, Bulai Wang, Heng Wan\",\"doi\":\"10.2174/2212797616666230612162748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThe traction power supply system (TPSS) of railways mainly focuses on power quality analysis. In the study of harmonic and negative order currents, many literature analysis are not specific enough, there is a lack of completeness in the simulation system.\\n\\n\\n\\nAnalyze the influence of harmonic and negative sequences of TPSS on the system circuit, and realize intelligent recognition for different working conditions.\\n\\n\\n\\nThe converter is designed based on the transient direct current control technology and the harmonic model of grid-side regenerative braking is established. According to the parameters of CRH2 (CRH380AL) locomotive, the EMU model is built and run in the TPSS for joint simulation. The availability of the model is verified by combining the harmonic content and voltage level. Then, the distribution of negative sequence current under the no-load, traction and regenerative braking conditions of the system is analyzed in detail, and the negative sequence characteristic waveform under various conditions is obtained, so as to obtain the variation law of negative sequence current under different conditions.\\n\\n\\n\\nUnder the regenerative braking condition, the current harmonic distortion is much higher than that under the traction condition. From the analysis of voltage and current phase, the power factor of regenerative braking is also small. In the negative sequence analysis, the tip negative sequence current impact phenomenon occurs mostly during the traction operation of the train, while the current impact effect is weakened during regenerative braking, but the amplitude of the negative sequence fluctuation shows an increasing trend.\\n\\n\\n\\nThe energy generated by regenerative braking will be utilized by the locomotive under traction, and these bad electric energies will have extremely adverse effects on the process of high-speed train receiving and changing current. These negative sequence analysis results can be used to identify and classify different working conditions and divide and conquer energy compensation actions to achieve energy saving and consumption reduction.\\n\",\"PeriodicalId\":39169,\"journal\":{\"name\":\"Recent Patents on Mechanical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Patents on Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2212797616666230612162748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2212797616666230612162748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

铁路牵引供电系统主要进行电能质量分析。在谐波和负序电流的研究中,许多文献分析不够具体,仿真系统缺乏完整性。分析了TPSS的谐波和负序对系统电路的影响,实现了对不同工况的智能识别。基于暂态直流控制技术设计了变流器,建立了电网侧再生制动的谐波模型。根据CRH2(CRH380AL)型机车的参数,建立了动车组模型,并在TPSS中运行,进行联合仿真。通过结合谐波含量和电压水平来验证该模型的可用性。然后,详细分析了系统在空载、牵引和再生制动条件下负序电流的分布,得到了各种条件下的负序特性波形,从而得出了不同条件下负序列电流的变化规律。在再生制动条件下,电流谐波失真远高于牵引条件下的谐波失真。从电压和电流相位的分析来看,再生制动的功率因数也较小。在负序分析中,叶尖负序电流冲击现象主要发生在列车牵引运行期间,而再生制动期间电流冲击效应减弱,但负序波动幅度呈增大趋势。再生制动产生的能量将被牵引下的机车所利用,而这些不良的电能将对高速列车接收和改变电流的过程产生极其不利的影响。这些负序分析结果可用于识别和分类不同的工况,划分和克服能量补偿行为,以实现节能降耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic Characteristics and Negative Sequence Analysis of Regenerative Braking for High-speed Railway
The traction power supply system (TPSS) of railways mainly focuses on power quality analysis. In the study of harmonic and negative order currents, many literature analysis are not specific enough, there is a lack of completeness in the simulation system. Analyze the influence of harmonic and negative sequences of TPSS on the system circuit, and realize intelligent recognition for different working conditions. The converter is designed based on the transient direct current control technology and the harmonic model of grid-side regenerative braking is established. According to the parameters of CRH2 (CRH380AL) locomotive, the EMU model is built and run in the TPSS for joint simulation. The availability of the model is verified by combining the harmonic content and voltage level. Then, the distribution of negative sequence current under the no-load, traction and regenerative braking conditions of the system is analyzed in detail, and the negative sequence characteristic waveform under various conditions is obtained, so as to obtain the variation law of negative sequence current under different conditions. Under the regenerative braking condition, the current harmonic distortion is much higher than that under the traction condition. From the analysis of voltage and current phase, the power factor of regenerative braking is also small. In the negative sequence analysis, the tip negative sequence current impact phenomenon occurs mostly during the traction operation of the train, while the current impact effect is weakened during regenerative braking, but the amplitude of the negative sequence fluctuation shows an increasing trend. The energy generated by regenerative braking will be utilized by the locomotive under traction, and these bad electric energies will have extremely adverse effects on the process of high-speed train receiving and changing current. These negative sequence analysis results can be used to identify and classify different working conditions and divide and conquer energy compensation actions to achieve energy saving and consumption reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Recent Patents on Mechanical Engineering
Recent Patents on Mechanical Engineering Engineering-Mechanical Engineering
CiteScore
0.80
自引率
0.00%
发文量
48
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信