一类广义Abel方程的有理周期解

IF 0.4 Q4 MATHEMATICS
C. Valls
{"title":"一类广义Abel方程的有理周期解","authors":"C. Valls","doi":"10.1080/1726037X.2022.2142353","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we deal with the equations a(x)dy/dx = A(x)y 2 + B(x)y 3, where a(x), A(x) and B(x) are complex polynomials with a(x)B(x) ≢ 0 and a(x) non-constant. First we show that the unique rational limit cycles that these equations can have are of the form y = 1/p(x) being p(x) some polynomial. Second we provide an upper bound on the number of these rational limit cycles. Moreover, we prove that if deg(B(x)) − deg(a(x)) + 1 is odd, or deg(A) > (deg(B(x)) + deg(a(x)) − 1)/2, then these Abel equations have at most two rational limit cycles and we provide examples of these Abel equations with three nontrivial rational periodic solutions.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"20 1","pages":"177 - 189"},"PeriodicalIF":0.4000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Periodic Solutions on Some Generalized Abel Equations\",\"authors\":\"C. Valls\",\"doi\":\"10.1080/1726037X.2022.2142353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we deal with the equations a(x)dy/dx = A(x)y 2 + B(x)y 3, where a(x), A(x) and B(x) are complex polynomials with a(x)B(x) ≢ 0 and a(x) non-constant. First we show that the unique rational limit cycles that these equations can have are of the form y = 1/p(x) being p(x) some polynomial. Second we provide an upper bound on the number of these rational limit cycles. Moreover, we prove that if deg(B(x)) − deg(a(x)) + 1 is odd, or deg(A) > (deg(B(x)) + deg(a(x)) − 1)/2, then these Abel equations have at most two rational limit cycles and we provide examples of these Abel equations with three nontrivial rational periodic solutions.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"20 1\",\"pages\":\"177 - 189\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2022.2142353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2022.2142353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文讨论了方程a(x)dy/dx=a(x)y2+B(x)y3,其中a(x。首先,我们证明了这些方程可以具有的唯一有理极限环的形式为y=1/p(x)是p(x)某个多项式。其次,我们给出了这些有理极限环的个数的上界。此外,我们证明了如果deg(B(x))−deg(a(x)+1是奇数,或者deg(a)>(deg(B(x)+deg(ax)−1)/2,那么这些Abel方程最多有两个有理极限环,并且我们提供了具有三个非平凡有理周期解的Abel方程的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational Periodic Solutions on Some Generalized Abel Equations
Abstract In this paper we deal with the equations a(x)dy/dx = A(x)y 2 + B(x)y 3, where a(x), A(x) and B(x) are complex polynomials with a(x)B(x) ≢ 0 and a(x) non-constant. First we show that the unique rational limit cycles that these equations can have are of the form y = 1/p(x) being p(x) some polynomial. Second we provide an upper bound on the number of these rational limit cycles. Moreover, we prove that if deg(B(x)) − deg(a(x)) + 1 is odd, or deg(A) > (deg(B(x)) + deg(a(x)) − 1)/2, then these Abel equations have at most two rational limit cycles and we provide examples of these Abel equations with three nontrivial rational periodic solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信