Nicolas Schwind, Emir Demirović, Katsumi Inoue, Jean-Marie Lagniez
{"title":"部分鲁棒组队算法","authors":"Nicolas Schwind, Emir Demirović, Katsumi Inoue, Jean-Marie Lagniez","doi":"10.1007/s10458-023-09608-7","DOIUrl":null,"url":null,"abstract":"<div><p>In one of its simplest forms, Team Formation involves deploying the least expensive team of agents while covering a set of skills. While current algorithms are reasonably successful in computing the best teams, the resilience to change of such solutions remains an important concern: Once a team has been formed, some of the agents considered at start may be finally defective and some skills may become uncovered. Two recently introduced solution concepts deal with this issue proactively: 1) form a team which is robust to changes so that after some agent losses, all skills remain covered, and 2) opt for a recoverable team, i.e., it can be \"repaired\" in the worst case by hiring new agents while keeping the overall deployment cost minimal. In this paper, we introduce the problem of <i>partially robust team formation</i> (PR–TF). Partial robustness is a weaker form of robustness which guarantees a certain degree of skill coverage after some agents are lost. We analyze the computational complexity of PR-TF and provide two complete algorithms for it. We compare the performance of our algorithms with the existing methods for robust and recoverable team formation on several existing and newly introduced benchmarks. Our empirical study demonstrates that partial robustness offers an interesting trade-off between (full) robustness and recoverability in terms of computational efficiency, skill coverage guaranteed after agent losses and repairability. This paper is an extended and revised version of as reported by (Schwind et al., Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’21), pp. 1154–1162, 2021).</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algorithms for partially robust team formation\",\"authors\":\"Nicolas Schwind, Emir Demirović, Katsumi Inoue, Jean-Marie Lagniez\",\"doi\":\"10.1007/s10458-023-09608-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In one of its simplest forms, Team Formation involves deploying the least expensive team of agents while covering a set of skills. While current algorithms are reasonably successful in computing the best teams, the resilience to change of such solutions remains an important concern: Once a team has been formed, some of the agents considered at start may be finally defective and some skills may become uncovered. Two recently introduced solution concepts deal with this issue proactively: 1) form a team which is robust to changes so that after some agent losses, all skills remain covered, and 2) opt for a recoverable team, i.e., it can be \\\"repaired\\\" in the worst case by hiring new agents while keeping the overall deployment cost minimal. In this paper, we introduce the problem of <i>partially robust team formation</i> (PR–TF). Partial robustness is a weaker form of robustness which guarantees a certain degree of skill coverage after some agents are lost. We analyze the computational complexity of PR-TF and provide two complete algorithms for it. We compare the performance of our algorithms with the existing methods for robust and recoverable team formation on several existing and newly introduced benchmarks. Our empirical study demonstrates that partial robustness offers an interesting trade-off between (full) robustness and recoverability in terms of computational efficiency, skill coverage guaranteed after agent losses and repairability. This paper is an extended and revised version of as reported by (Schwind et al., Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’21), pp. 1154–1162, 2021).</p></div>\",\"PeriodicalId\":55586,\"journal\":{\"name\":\"Autonomous Agents and Multi-Agent Systems\",\"volume\":\"37 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10458-023-09608-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09608-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
摘要
在最简单的形式之一中,团队组建涉及部署成本最低的特工团队,同时涵盖一系列技能。虽然目前的算法在计算最佳团队方面相当成功,但此类解决方案对变化的弹性仍然是一个重要问题:一旦团队成立,一些最初考虑的代理可能最终会有缺陷,一些技能可能会被发现。最近引入的两个解决方案概念积极主动地处理了这个问题:1)组建一个能够应对变化的团队,以便在失去一些代理后,所有技能都能得到保障;2)选择一个可恢复的团队,即在最坏的情况下,可以通过雇佣新代理来“修复”团队,同时将总体部署成本降至最低。在本文中,我们引入了部分鲁棒团队组建(PR–TF)问题。部分鲁棒性是一种较弱的鲁棒性形式,它在一些代理丢失后保证了一定程度的技能覆盖。我们分析了PR-TF的计算复杂性,并为其提供了两个完整的算法。我们在几个现有和新引入的基准上,将我们的算法与现有的稳健和可恢复团队组建方法的性能进行了比较。我们的实证研究表明,在计算效率、代理损失后保证的技能覆盖率和可修复性方面,部分鲁棒性在(完全)鲁棒性和可恢复性之间提供了一个有趣的权衡。本文是(Schwind et al.,Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems(AAMAS'21),pp.1154-1162,2021)的扩展和修订版。
In one of its simplest forms, Team Formation involves deploying the least expensive team of agents while covering a set of skills. While current algorithms are reasonably successful in computing the best teams, the resilience to change of such solutions remains an important concern: Once a team has been formed, some of the agents considered at start may be finally defective and some skills may become uncovered. Two recently introduced solution concepts deal with this issue proactively: 1) form a team which is robust to changes so that after some agent losses, all skills remain covered, and 2) opt for a recoverable team, i.e., it can be "repaired" in the worst case by hiring new agents while keeping the overall deployment cost minimal. In this paper, we introduce the problem of partially robust team formation (PR–TF). Partial robustness is a weaker form of robustness which guarantees a certain degree of skill coverage after some agents are lost. We analyze the computational complexity of PR-TF and provide two complete algorithms for it. We compare the performance of our algorithms with the existing methods for robust and recoverable team formation on several existing and newly introduced benchmarks. Our empirical study demonstrates that partial robustness offers an interesting trade-off between (full) robustness and recoverability in terms of computational efficiency, skill coverage guaranteed after agent losses and repairability. This paper is an extended and revised version of as reported by (Schwind et al., Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’21), pp. 1154–1162, 2021).
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.