{"title":"用于确定刑事审判准确结果的机器学习","authors":"Jane Mitchell;Simon Mitchell;Cliff Mitchell","doi":"10.1093/lpr/mgaa003","DOIUrl":null,"url":null,"abstract":"Advances in mathematical and computational technologies have brought unique and ground-breaking benefits to diverse fields throughout society (engineering, medicine, economics, etc.). Within legal systems, however, the potential applications of data science and innovative mathematical tools have yet to be embraced with the same ambition. The complex decision-making that is needed for reaching just verdicts is often seen as out of reach for such approaches and, in the case of criminal trials, this inhibits exploration into whether machine learning could have a positive impact. Here, through assigning numerical scores to prosecution and defence evidence, and employing an approach based on dimensionality reduction, we showed that evidence strands presented at historical murder trials could be used to train effective machine-learning algorithms (or models). We tested the evidence quantification approach with the trained model and showed that, through machine learning, criminal cases could be clearly classified (probability >99.9%) as belonging to either a guilty or a not-guilty category. The classification was found to be as expected for all test cases. All guilty test cases that were not wrongful convictions were correctly assigned to the guilty category by our model and, crucially, test cases that were wrongful convictions were correctly assigned to the not-guilty category. This work demonstrated the potential for machine learning to benefit criminal trial decision-making, and should motivate further testing and development of the model and datasets for assisting the judicial process.","PeriodicalId":48724,"journal":{"name":"Law Probability & Risk","volume":"19 1","pages":"43-65"},"PeriodicalIF":1.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/lpr/mgaa003","citationCount":"4","resultStr":"{\"title\":\"Machine learning for determining accurate outcomes in criminal trials\",\"authors\":\"Jane Mitchell;Simon Mitchell;Cliff Mitchell\",\"doi\":\"10.1093/lpr/mgaa003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in mathematical and computational technologies have brought unique and ground-breaking benefits to diverse fields throughout society (engineering, medicine, economics, etc.). Within legal systems, however, the potential applications of data science and innovative mathematical tools have yet to be embraced with the same ambition. The complex decision-making that is needed for reaching just verdicts is often seen as out of reach for such approaches and, in the case of criminal trials, this inhibits exploration into whether machine learning could have a positive impact. Here, through assigning numerical scores to prosecution and defence evidence, and employing an approach based on dimensionality reduction, we showed that evidence strands presented at historical murder trials could be used to train effective machine-learning algorithms (or models). We tested the evidence quantification approach with the trained model and showed that, through machine learning, criminal cases could be clearly classified (probability >99.9%) as belonging to either a guilty or a not-guilty category. The classification was found to be as expected for all test cases. All guilty test cases that were not wrongful convictions were correctly assigned to the guilty category by our model and, crucially, test cases that were wrongful convictions were correctly assigned to the not-guilty category. This work demonstrated the potential for machine learning to benefit criminal trial decision-making, and should motivate further testing and development of the model and datasets for assisting the judicial process.\",\"PeriodicalId\":48724,\"journal\":{\"name\":\"Law Probability & Risk\",\"volume\":\"19 1\",\"pages\":\"43-65\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/lpr/mgaa003\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Law Probability & Risk\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9254202/\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LAW\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Law Probability & Risk","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9254202/","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LAW","Score":null,"Total":0}
Machine learning for determining accurate outcomes in criminal trials
Advances in mathematical and computational technologies have brought unique and ground-breaking benefits to diverse fields throughout society (engineering, medicine, economics, etc.). Within legal systems, however, the potential applications of data science and innovative mathematical tools have yet to be embraced with the same ambition. The complex decision-making that is needed for reaching just verdicts is often seen as out of reach for such approaches and, in the case of criminal trials, this inhibits exploration into whether machine learning could have a positive impact. Here, through assigning numerical scores to prosecution and defence evidence, and employing an approach based on dimensionality reduction, we showed that evidence strands presented at historical murder trials could be used to train effective machine-learning algorithms (or models). We tested the evidence quantification approach with the trained model and showed that, through machine learning, criminal cases could be clearly classified (probability >99.9%) as belonging to either a guilty or a not-guilty category. The classification was found to be as expected for all test cases. All guilty test cases that were not wrongful convictions were correctly assigned to the guilty category by our model and, crucially, test cases that were wrongful convictions were correctly assigned to the not-guilty category. This work demonstrated the potential for machine learning to benefit criminal trial decision-making, and should motivate further testing and development of the model and datasets for assisting the judicial process.
期刊介绍:
Law, Probability & Risk is a fully refereed journal which publishes papers dealing with topics on the interface of law and probabilistic reasoning. These are interpreted broadly to include aspects relevant to the interpretation of scientific evidence, the assessment of uncertainty and the assessment of risk. The readership includes academic lawyers, mathematicians, statisticians and social scientists with interests in quantitative reasoning.
The primary objective of the journal is to cover issues in law, which have a scientific element, with an emphasis on statistical and probabilistic issues and the assessment of risk.
Examples of topics which may be covered include communications law, computers and the law, environmental law, law and medicine, regulatory law for science and technology, identification problems (such as DNA but including other materials), sampling issues (drugs, computer pornography, fraud), offender profiling, credit scoring, risk assessment, the role of statistics and probability in drafting legislation, the assessment of competing theories of evidence (possibly with a view to forming an optimal combination of them). In addition, a whole new area is emerging in the application of computers to medicine and other safety-critical areas. New legislation is required to define the responsibility of computer experts who develop software for tackling these safety-critical problems.