一种使用深网格细胞的图像人脸检测系统

О. В. Яловега, Р. А. Мельник
{"title":"一种使用深网格细胞的图像人脸检测系统","authors":"О. В. Яловега, Р. А. Мельник","doi":"10.36930/40320209","DOIUrl":null,"url":null,"abstract":"Здійснено огляд попередніх досліджень та актуальність систем з пошуку обличчя. Виявлено недоліки і труднощі, що впливають на їх ефективність. Запропоновано для реалізації систему для пошуку обличчя на зображенні на підставі алгоритмів розпізнавання обличчя. Пошук обличчя є першим кроком у різних інших застосуваннях: відстеження, аналіз, розпізнавання осіб. Окрім використання у поєднанні з технологіями, описаними вище, можна використовувати пошук обличчя, щоб: підрахувати кількість людей, які є на екрані або дивляться на цифровий дисплей; визначити, які ділянки зображення потрібно розмивати, щоб забезпечити конфіденційність. Використано глибинні згорткові нейронні мережі для реалізації, оскільки вони ефективніші для цієї задачі. Науковим результатом під час розроблення поданої системи є удосконалення алгоритмів розпізнавання обличчя на зображенні: пришвидшення, підвищення точності розпізнавання. Реалізовано першу версію запропонованої системи. Розроблена система може бути використана у різних сферах людської діяльності та в багатьох задачах аналітики. Для цього використано Tensoflow – спеціальний фреймоворк для розробки, навчання власних глибинних нейронних мереж. Вирішено використати набір даних LFW – People (Face Recognition) для навчання моделі. Використано Python бібліотеку LabelImg, щоб попередньо промаркувати навчальні дані, які нейронна мережа повинна знаходити на зображенні. Зроблено карту міток для навчання моделі. Запущено 25000 ітерацій для навчання моделі. Отримано рівень втрат 0,069 (похибка у 6,9 %) на останній ітерації. Модель показує однозначний результат для більшості тестових даних (≥99 %), але рівень точності у випадках, коли на зображенні містилися головні убори, є дещо нижчим (97 %). Модель поки що не тестувалася на даних із великим кутом повороту обличчя, тому важливо перевірити її стійкість для цього фактору і за змогою знизити його вплив на точність моделі.","PeriodicalId":33529,"journal":{"name":"Naukovii visnik NLTU Ukrayini","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Система виявлення обличчя на зображенні з використанням глибинної згорткової нейронної мережі\",\"authors\":\"О. В. Яловега, Р. А. Мельник\",\"doi\":\"10.36930/40320209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Здійснено огляд попередніх досліджень та актуальність систем з пошуку обличчя. Виявлено недоліки і труднощі, що впливають на їх ефективність. Запропоновано для реалізації систему для пошуку обличчя на зображенні на підставі алгоритмів розпізнавання обличчя. Пошук обличчя є першим кроком у різних інших застосуваннях: відстеження, аналіз, розпізнавання осіб. Окрім використання у поєднанні з технологіями, описаними вище, можна використовувати пошук обличчя, щоб: підрахувати кількість людей, які є на екрані або дивляться на цифровий дисплей; визначити, які ділянки зображення потрібно розмивати, щоб забезпечити конфіденційність. Використано глибинні згорткові нейронні мережі для реалізації, оскільки вони ефективніші для цієї задачі. Науковим результатом під час розроблення поданої системи є удосконалення алгоритмів розпізнавання обличчя на зображенні: пришвидшення, підвищення точності розпізнавання. Реалізовано першу версію запропонованої системи. Розроблена система може бути використана у різних сферах людської діяльності та в багатьох задачах аналітики. Для цього використано Tensoflow – спеціальний фреймоворк для розробки, навчання власних глибинних нейронних мереж. Вирішено використати набір даних LFW – People (Face Recognition) для навчання моделі. Використано Python бібліотеку LabelImg, щоб попередньо промаркувати навчальні дані, які нейронна мережа повинна знаходити на зображенні. Зроблено карту міток для навчання моделі. Запущено 25000 ітерацій для навчання моделі. Отримано рівень втрат 0,069 (похибка у 6,9 %) на останній ітерації. Модель показує однозначний результат для більшості тестових даних (≥99 %), але рівень точності у випадках, коли на зображенні містилися головні убори, є дещо нижчим (97 %). Модель поки що не тестувалася на даних із великим кутом повороту обличчя, тому важливо перевірити її стійкість для цього фактору і за змогою знизити його вплив на точність моделі.\",\"PeriodicalId\":33529,\"journal\":{\"name\":\"Naukovii visnik NLTU Ukrayini\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naukovii visnik NLTU Ukrayini\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36930/40320209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovii visnik NLTU Ukrayini","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36930/40320209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

之前的搜索已经执行,系统正在面部搜索中运行。已经发现影响其有效性的弱点和困难。提出了一种实现面部识别系统的方法。面部搜索是其他各种应用程序的第一步:跟踪、分析、识别。除了使用上述技术外,面部搜索还可以用于:计算屏幕上或观看数字显示器的人数;以及确定应该清洗图像的哪些区域以确保机密性。深度核心神经网络被用于实现,因为它们对这项任务更有效。该系统开发的科学成果是改进了图像上的面部识别算法:加速、增强了身份验证。拟议系统的第一个版本已经实施。开发的系统可以用于人类活动的不同领域和许多分析任务。Tensoflow是一名特殊的框架工作者,用于开发、学习自己的深层神经元网络。决定使用LFW(人脸识别)数据集来学习该模型。Python LabelImg库用于预览神经网络应该在图像中找到的学习数据。已经创建了一个标记映射来学习模型。25000把学习模型的吉他正在运行。上次迭代的损失率为0.069(6.9%的误差)。该模型对大多数测试数据显示出清晰的结果(≥99%),但准确度水平略低(97%)。该模型尚未在具有大角度人脸旋转的数据上进行测试,因此检查该因素的稳定性并减少其对模型精度的影响很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Система виявлення обличчя на зображенні з використанням глибинної згорткової нейронної мережі
Здійснено огляд попередніх досліджень та актуальність систем з пошуку обличчя. Виявлено недоліки і труднощі, що впливають на їх ефективність. Запропоновано для реалізації систему для пошуку обличчя на зображенні на підставі алгоритмів розпізнавання обличчя. Пошук обличчя є першим кроком у різних інших застосуваннях: відстеження, аналіз, розпізнавання осіб. Окрім використання у поєднанні з технологіями, описаними вище, можна використовувати пошук обличчя, щоб: підрахувати кількість людей, які є на екрані або дивляться на цифровий дисплей; визначити, які ділянки зображення потрібно розмивати, щоб забезпечити конфіденційність. Використано глибинні згорткові нейронні мережі для реалізації, оскільки вони ефективніші для цієї задачі. Науковим результатом під час розроблення поданої системи є удосконалення алгоритмів розпізнавання обличчя на зображенні: пришвидшення, підвищення точності розпізнавання. Реалізовано першу версію запропонованої системи. Розроблена система може бути використана у різних сферах людської діяльності та в багатьох задачах аналітики. Для цього використано Tensoflow – спеціальний фреймоворк для розробки, навчання власних глибинних нейронних мереж. Вирішено використати набір даних LFW – People (Face Recognition) для навчання моделі. Використано Python бібліотеку LabelImg, щоб попередньо промаркувати навчальні дані, які нейронна мережа повинна знаходити на зображенні. Зроблено карту міток для навчання моделі. Запущено 25000 ітерацій для навчання моделі. Отримано рівень втрат 0,069 (похибка у 6,9 %) на останній ітерації. Модель показує однозначний результат для більшості тестових даних (≥99 %), але рівень точності у випадках, коли на зображенні містилися головні убори, є дещо нижчим (97 %). Модель поки що не тестувалася на даних із великим кутом повороту обличчя, тому важливо перевірити її стійкість для цього фактору і за змогою знизити його вплив на точність моделі.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
41
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信