Liqi Liu, Xiaofeng Guo, Lei Shi, Liquan Chen, Fangzhou Zhang, Aijun Li
{"title":"SiO2-GO纳米填料增强水性聚氨酯丙烯酸涂料的耐腐蚀性","authors":"Liqi Liu, Xiaofeng Guo, Lei Shi, Liquan Chen, Fangzhou Zhang, Aijun Li","doi":"10.1177/2633366X20941524","DOIUrl":null,"url":null,"abstract":"Corrosion to metal is a great challenge to major industries. Anticorrosive coatings can effectively prevent metal corrosion. In this study, we propose a novel method to prepare silica nanoparticles-covered graphene oxide (SiO2-GO) nanohybrids and anticorrosion SiO2-GO/waterborne polyurethane acrylic (WPUA) coatings. Firstly, we obtained silane-functionalized graphene oxide (A-GO) via a simple covalent functionalization of graphene oxide (GO) with 3-aminopropyltriethoxysilane. Secondly, SiO2-GO was synthesized by a simple sol–gel method with tetraethoxysilane in water–alcohol solution. Finally, the obtained SiO2-GO nanofillers were added into WPUA to prepare SiO2-GO/WPUA coatings. GO, A-GO, and SiO2-GO nanohybrids could be confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra, and transmission electron microscope. SiO2-GO nanohybrids showed small size compared with the unfunctionalized GO. Meanwhile, GO, A-GO, and SiO2-GO nanofillers were added into WPUA. The electrochemical impedance spectroscopy and field emission scanning electron microscope indicate that SiO2-GO nanohybrids can be homogeneously dispersed in the WPUA coatings at 0.4% loading level and the SiO2-GO/WPUA film exhibits excellent anticorrosion performance. SiO2-GO nanoparticles can effectively utilize in the area of anticorrosive nanofiller industry. This study provides a convenient method of anticorrosive coating production.","PeriodicalId":55551,"journal":{"name":"Advanced Composites Letters","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2633366X20941524","citationCount":"4","resultStr":"{\"title\":\"SiO2-GO nanofillers enhance the corrosion resistance of waterborne polyurethane acrylic coatings\",\"authors\":\"Liqi Liu, Xiaofeng Guo, Lei Shi, Liquan Chen, Fangzhou Zhang, Aijun Li\",\"doi\":\"10.1177/2633366X20941524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corrosion to metal is a great challenge to major industries. Anticorrosive coatings can effectively prevent metal corrosion. In this study, we propose a novel method to prepare silica nanoparticles-covered graphene oxide (SiO2-GO) nanohybrids and anticorrosion SiO2-GO/waterborne polyurethane acrylic (WPUA) coatings. Firstly, we obtained silane-functionalized graphene oxide (A-GO) via a simple covalent functionalization of graphene oxide (GO) with 3-aminopropyltriethoxysilane. Secondly, SiO2-GO was synthesized by a simple sol–gel method with tetraethoxysilane in water–alcohol solution. Finally, the obtained SiO2-GO nanofillers were added into WPUA to prepare SiO2-GO/WPUA coatings. GO, A-GO, and SiO2-GO nanohybrids could be confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra, and transmission electron microscope. SiO2-GO nanohybrids showed small size compared with the unfunctionalized GO. Meanwhile, GO, A-GO, and SiO2-GO nanofillers were added into WPUA. The electrochemical impedance spectroscopy and field emission scanning electron microscope indicate that SiO2-GO nanohybrids can be homogeneously dispersed in the WPUA coatings at 0.4% loading level and the SiO2-GO/WPUA film exhibits excellent anticorrosion performance. SiO2-GO nanoparticles can effectively utilize in the area of anticorrosive nanofiller industry. This study provides a convenient method of anticorrosive coating production.\",\"PeriodicalId\":55551,\"journal\":{\"name\":\"Advanced Composites Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2633366X20941524\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2633366X20941524\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2633366X20941524","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
SiO2-GO nanofillers enhance the corrosion resistance of waterborne polyurethane acrylic coatings
Corrosion to metal is a great challenge to major industries. Anticorrosive coatings can effectively prevent metal corrosion. In this study, we propose a novel method to prepare silica nanoparticles-covered graphene oxide (SiO2-GO) nanohybrids and anticorrosion SiO2-GO/waterborne polyurethane acrylic (WPUA) coatings. Firstly, we obtained silane-functionalized graphene oxide (A-GO) via a simple covalent functionalization of graphene oxide (GO) with 3-aminopropyltriethoxysilane. Secondly, SiO2-GO was synthesized by a simple sol–gel method with tetraethoxysilane in water–alcohol solution. Finally, the obtained SiO2-GO nanofillers were added into WPUA to prepare SiO2-GO/WPUA coatings. GO, A-GO, and SiO2-GO nanohybrids could be confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra, and transmission electron microscope. SiO2-GO nanohybrids showed small size compared with the unfunctionalized GO. Meanwhile, GO, A-GO, and SiO2-GO nanofillers were added into WPUA. The electrochemical impedance spectroscopy and field emission scanning electron microscope indicate that SiO2-GO nanohybrids can be homogeneously dispersed in the WPUA coatings at 0.4% loading level and the SiO2-GO/WPUA film exhibits excellent anticorrosion performance. SiO2-GO nanoparticles can effectively utilize in the area of anticorrosive nanofiller industry. This study provides a convenient method of anticorrosive coating production.
期刊介绍:
Advanced Composites Letters is a peer reviewed, open access journal publishing research which focuses on the field of science and engineering of advanced composite materials or structures.