关于代数同基的无限循环空间与动力球

IF 0.9 Q2 MATHEMATICS
Tom Bachmann, E. Elmanto, Marc Hoyois, Adeel A. Khan, V. Sosnilo, Maria Yakerson
{"title":"关于代数同基的无限循环空间与动力球","authors":"Tom Bachmann, E. Elmanto, Marc Hoyois, Adeel A. Khan, V. Sosnilo, Maria Yakerson","doi":"10.46298/epiga.2021.volume5.6581","DOIUrl":null,"url":null,"abstract":"We obtain geometric models for the infinite loop spaces of the motivic\nspectra $\\mathrm{MGL}$, $\\mathrm{MSL}$, and $\\mathbf{1}$ over a field. They are\nmotivically equivalent to $\\mathbb{Z}\\times\n\\mathrm{Hilb}_\\infty^\\mathrm{lci}(\\mathbb{A}^\\infty)^+$, $\\mathbb{Z}\\times\n\\mathrm{Hilb}_\\infty^\\mathrm{or}(\\mathbb{A}^\\infty)^+$, and $\\mathbb{Z}\\times\n\\mathrm{Hilb}_\\infty^\\mathrm{fr}(\\mathbb{A}^\\infty)^+$, respectively, where\n$\\mathrm{Hilb}_d^\\mathrm{lci}(\\mathbb{A}^n)$ (resp.\n$\\mathrm{Hilb}_d^\\mathrm{or}(\\mathbb{A}^n)$,\n$\\mathrm{Hilb}_d^\\mathrm{fr}(\\mathbb{A}^n)$) is the Hilbert scheme of lci\npoints (resp. oriented points, framed points) of degree $d$ in $\\mathbb{A}^n$,\nand $+$ is Quillen's plus construction. Moreover, we show that the plus\nconstruction is redundant in positive characteristic.\n\n Comment: 13 pages. v5: published version; v4: final version, to appear in\n \\'Epijournal G\\'eom. Alg\\'ebrique; v3: minor corrections; v2: added details\n in the moving lemma over finite fields","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On the infinite loop spaces of algebraic cobordism and the motivic\\n sphere\",\"authors\":\"Tom Bachmann, E. Elmanto, Marc Hoyois, Adeel A. Khan, V. Sosnilo, Maria Yakerson\",\"doi\":\"10.46298/epiga.2021.volume5.6581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain geometric models for the infinite loop spaces of the motivic\\nspectra $\\\\mathrm{MGL}$, $\\\\mathrm{MSL}$, and $\\\\mathbf{1}$ over a field. They are\\nmotivically equivalent to $\\\\mathbb{Z}\\\\times\\n\\\\mathrm{Hilb}_\\\\infty^\\\\mathrm{lci}(\\\\mathbb{A}^\\\\infty)^+$, $\\\\mathbb{Z}\\\\times\\n\\\\mathrm{Hilb}_\\\\infty^\\\\mathrm{or}(\\\\mathbb{A}^\\\\infty)^+$, and $\\\\mathbb{Z}\\\\times\\n\\\\mathrm{Hilb}_\\\\infty^\\\\mathrm{fr}(\\\\mathbb{A}^\\\\infty)^+$, respectively, where\\n$\\\\mathrm{Hilb}_d^\\\\mathrm{lci}(\\\\mathbb{A}^n)$ (resp.\\n$\\\\mathrm{Hilb}_d^\\\\mathrm{or}(\\\\mathbb{A}^n)$,\\n$\\\\mathrm{Hilb}_d^\\\\mathrm{fr}(\\\\mathbb{A}^n)$) is the Hilbert scheme of lci\\npoints (resp. oriented points, framed points) of degree $d$ in $\\\\mathbb{A}^n$,\\nand $+$ is Quillen's plus construction. Moreover, we show that the plus\\nconstruction is redundant in positive characteristic.\\n\\n Comment: 13 pages. v5: published version; v4: final version, to appear in\\n \\\\'Epijournal G\\\\'eom. Alg\\\\'ebrique; v3: minor corrections; v2: added details\\n in the moving lemma over finite fields\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2021.volume5.6581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2021.volume5.6581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

我们得到了域上原谱$\mathrm{MGL}$、$\mathrm{MSL}$和$\mathbf{1}$的无限循环空间的几何模型。它们在动机上等同于$\mathbb{Z}\times\mathrm{Hilb}_\infty ^\mathrm{lci}(\mathbb{A}^\infty)^+$,$\mathbb{Z}\times\mathrm{Hilb}_\infty ^\mathrm{or}(\mathbb{A}^\infty)^+$和$\mathbb{Z}\times\mathrm{Hilb}_\infty ^\mathrm{fr}(\mathbb{A}^\infty)^+$,其中$\mathrm{Hilb}_d^\mathrm{lci}(\mathbb{A}^n)$(分别为$\mathrm{Hilb}_d^\mathrm{or}(\mathbb{A}^n)$,$\mathrm{Hilb}_d^\mathrm{fr}(\mathbb{A}^n)$)是$\mathbb}^n$中$d$次的lcipoints(分别为定向点、框架点)的Hilbert格式,$+$是Quillen的正构造。此外,我们还证明了正态结构的冗余性。评论:13页。v5:发布版本;v4:最终版本,将出现在'Pejournal G'om中。阿尔及利亚;v3:轻微修正;v2:有限域上移动引理的附加细节
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the infinite loop spaces of algebraic cobordism and the motivic sphere
We obtain geometric models for the infinite loop spaces of the motivic spectra $\mathrm{MGL}$, $\mathrm{MSL}$, and $\mathbf{1}$ over a field. They are motivically equivalent to $\mathbb{Z}\times \mathrm{Hilb}_\infty^\mathrm{lci}(\mathbb{A}^\infty)^+$, $\mathbb{Z}\times \mathrm{Hilb}_\infty^\mathrm{or}(\mathbb{A}^\infty)^+$, and $\mathbb{Z}\times \mathrm{Hilb}_\infty^\mathrm{fr}(\mathbb{A}^\infty)^+$, respectively, where $\mathrm{Hilb}_d^\mathrm{lci}(\mathbb{A}^n)$ (resp. $\mathrm{Hilb}_d^\mathrm{or}(\mathbb{A}^n)$, $\mathrm{Hilb}_d^\mathrm{fr}(\mathbb{A}^n)$) is the Hilbert scheme of lci points (resp. oriented points, framed points) of degree $d$ in $\mathbb{A}^n$, and $+$ is Quillen's plus construction. Moreover, we show that the plus construction is redundant in positive characteristic. Comment: 13 pages. v5: published version; v4: final version, to appear in \'Epijournal G\'eom. Alg\'ebrique; v3: minor corrections; v2: added details in the moving lemma over finite fields
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
19
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信