M. Meena, B. Yadav, M. Dotaniya, M. Meena, R. Jat, R. Choudhary, Harvir Singh, Vd Meena, P. Rai
{"title":"苏打灌溉条件下添加有机改良剂介导的土壤肥力、微生物动态和芥菜产量潜力","authors":"M. Meena, B. Yadav, M. Dotaniya, M. Meena, R. Jat, R. Choudhary, Harvir Singh, Vd Meena, P. Rai","doi":"10.1080/03650340.2023.2192489","DOIUrl":null,"url":null,"abstract":"ABSTRACT Use of saline-sodic irrigation water degrades soil health and reduced mustard yield, particularly in India’s low-rainfall regions. This research was conducted to assess the effect of sodic water and nitrogen sources on soil organic carbon (SOC), microbial biomass, soil enzymatic activities, and interaction effects on mustard seed yield. The experiment was laid out in split-plot design comprising four levels of sodium adsorption ratio (SAR) of water (6, 10, 20, and 30) and six nitrogen sources [(control, 125% recommended dose of nitrogen (RDN) through urea, 75% RDN+50% RDN through farm yard manure (FYM), 75% RDN through urea+50% RDN through vermicompost (VC), 50% RDN through urea+75% RDN through FYM, 50% RDN through urea+75% RDN through VC]. The use of high SAR irrigation water caused a significant reduction in soil fertility and microbial parameters. The combined use of chemical fertilizers, FYM, and vermicompost significantly increased microbial activities (64.9% SMB-C), SOC (23.5%), soil enzyme activity (dehydrogenase and alkaline phosphates), and mustard seed yield (49%). The use of 50% RDN via urea+75% RDN via VC was suggested as a better technology for minimizing the adverse effect of high SAR water on crop yield.","PeriodicalId":8154,"journal":{"name":"Archives of Agronomy and Soil Science","volume":"69 1","pages":"2982 - 2998"},"PeriodicalIF":2.3000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Soil fertility, microbial dynamics and mustard yield potential mediated by addition of organic amendments under sodic irrigation water\",\"authors\":\"M. Meena, B. Yadav, M. Dotaniya, M. Meena, R. Jat, R. Choudhary, Harvir Singh, Vd Meena, P. Rai\",\"doi\":\"10.1080/03650340.2023.2192489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Use of saline-sodic irrigation water degrades soil health and reduced mustard yield, particularly in India’s low-rainfall regions. This research was conducted to assess the effect of sodic water and nitrogen sources on soil organic carbon (SOC), microbial biomass, soil enzymatic activities, and interaction effects on mustard seed yield. The experiment was laid out in split-plot design comprising four levels of sodium adsorption ratio (SAR) of water (6, 10, 20, and 30) and six nitrogen sources [(control, 125% recommended dose of nitrogen (RDN) through urea, 75% RDN+50% RDN through farm yard manure (FYM), 75% RDN through urea+50% RDN through vermicompost (VC), 50% RDN through urea+75% RDN through FYM, 50% RDN through urea+75% RDN through VC]. The use of high SAR irrigation water caused a significant reduction in soil fertility and microbial parameters. The combined use of chemical fertilizers, FYM, and vermicompost significantly increased microbial activities (64.9% SMB-C), SOC (23.5%), soil enzyme activity (dehydrogenase and alkaline phosphates), and mustard seed yield (49%). The use of 50% RDN via urea+75% RDN via VC was suggested as a better technology for minimizing the adverse effect of high SAR water on crop yield.\",\"PeriodicalId\":8154,\"journal\":{\"name\":\"Archives of Agronomy and Soil Science\",\"volume\":\"69 1\",\"pages\":\"2982 - 2998\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Agronomy and Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03650340.2023.2192489\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Agronomy and Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03650340.2023.2192489","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Soil fertility, microbial dynamics and mustard yield potential mediated by addition of organic amendments under sodic irrigation water
ABSTRACT Use of saline-sodic irrigation water degrades soil health and reduced mustard yield, particularly in India’s low-rainfall regions. This research was conducted to assess the effect of sodic water and nitrogen sources on soil organic carbon (SOC), microbial biomass, soil enzymatic activities, and interaction effects on mustard seed yield. The experiment was laid out in split-plot design comprising four levels of sodium adsorption ratio (SAR) of water (6, 10, 20, and 30) and six nitrogen sources [(control, 125% recommended dose of nitrogen (RDN) through urea, 75% RDN+50% RDN through farm yard manure (FYM), 75% RDN through urea+50% RDN through vermicompost (VC), 50% RDN through urea+75% RDN through FYM, 50% RDN through urea+75% RDN through VC]. The use of high SAR irrigation water caused a significant reduction in soil fertility and microbial parameters. The combined use of chemical fertilizers, FYM, and vermicompost significantly increased microbial activities (64.9% SMB-C), SOC (23.5%), soil enzyme activity (dehydrogenase and alkaline phosphates), and mustard seed yield (49%). The use of 50% RDN via urea+75% RDN via VC was suggested as a better technology for minimizing the adverse effect of high SAR water on crop yield.
期刊介绍:
rchives of Agronomy and Soil Science is a well-established journal that has been in publication for over fifty years. The Journal publishes papers over the entire range of agronomy and soil science. Manuscripts involved in developing and testing hypotheses to understand casual relationships in the following areas:
plant nutrition
fertilizers
manure
soil tillage
soil biotechnology and ecophysiology
amelioration
irrigation and drainage
plant production on arable and grass land
agroclimatology
landscape formation and environmental management in rural regions
management of natural and created wetland ecosystems
bio-geochemical processes
soil-plant-microbe interactions and rhizosphere processes
soil morphology, classification, monitoring, heterogeneity and scales
reuse of waste waters and biosolids of agri-industrial origin in soil are especially encouraged.
As well as original contributions, the Journal also publishes current reviews.