V. Cimini, M. Valeri, E. Polino, S. Piacentini, F. Ceccarelli, G. Corrielli, N. Spagnolo, R. Osellame, F. Sciarrino
{"title":"用于量子多参数估计的深度强化学习","authors":"V. Cimini, M. Valeri, E. Polino, S. Piacentini, F. Ceccarelli, G. Corrielli, N. Spagnolo, R. Osellame, F. Sciarrino","doi":"10.1117/1.AP.5.1.016005","DOIUrl":null,"url":null,"abstract":"Abstract. Estimation of physical quantities is at the core of most scientific research, and the use of quantum devices promises to enhance its performances. In real scenarios, it is fundamental to consider that resources are limited, and Bayesian adaptive estimation represents a powerful approach to efficiently allocate, during the estimation process, all the available resources. However, this framework relies on the precise knowledge of the system model, retrieved with a fine calibration, with results that are often computationally and experimentally demanding. We introduce a model-free and deep-learning-based approach to efficiently implement realistic Bayesian quantum metrology tasks accomplishing all the relevant challenges, without relying on any a priori knowledge of the system. To overcome this need, a neural network is trained directly on experimental data to learn the multiparameter Bayesian update. Then the system is set at its optimal working point through feedback provided by a reinforcement learning algorithm trained to reconstruct and enhance experiment heuristics of the investigated quantum sensor. Notably, we prove experimentally the achievement of higher estimation performances than standard methods, demonstrating the strength of the combination of these two black-box algorithms on an integrated photonic circuit. Our work represents an important step toward fully artificial intelligence-based quantum metrology.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"016005 - 016005"},"PeriodicalIF":20.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Deep reinforcement learning for quantum multiparameter estimation\",\"authors\":\"V. Cimini, M. Valeri, E. Polino, S. Piacentini, F. Ceccarelli, G. Corrielli, N. Spagnolo, R. Osellame, F. Sciarrino\",\"doi\":\"10.1117/1.AP.5.1.016005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Estimation of physical quantities is at the core of most scientific research, and the use of quantum devices promises to enhance its performances. In real scenarios, it is fundamental to consider that resources are limited, and Bayesian adaptive estimation represents a powerful approach to efficiently allocate, during the estimation process, all the available resources. However, this framework relies on the precise knowledge of the system model, retrieved with a fine calibration, with results that are often computationally and experimentally demanding. We introduce a model-free and deep-learning-based approach to efficiently implement realistic Bayesian quantum metrology tasks accomplishing all the relevant challenges, without relying on any a priori knowledge of the system. To overcome this need, a neural network is trained directly on experimental data to learn the multiparameter Bayesian update. Then the system is set at its optimal working point through feedback provided by a reinforcement learning algorithm trained to reconstruct and enhance experiment heuristics of the investigated quantum sensor. Notably, we prove experimentally the achievement of higher estimation performances than standard methods, demonstrating the strength of the combination of these two black-box algorithms on an integrated photonic circuit. Our work represents an important step toward fully artificial intelligence-based quantum metrology.\",\"PeriodicalId\":33241,\"journal\":{\"name\":\"Advanced Photonics\",\"volume\":\"5 1\",\"pages\":\"016005 - 016005\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.AP.5.1.016005\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.5.1.016005","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Deep reinforcement learning for quantum multiparameter estimation
Abstract. Estimation of physical quantities is at the core of most scientific research, and the use of quantum devices promises to enhance its performances. In real scenarios, it is fundamental to consider that resources are limited, and Bayesian adaptive estimation represents a powerful approach to efficiently allocate, during the estimation process, all the available resources. However, this framework relies on the precise knowledge of the system model, retrieved with a fine calibration, with results that are often computationally and experimentally demanding. We introduce a model-free and deep-learning-based approach to efficiently implement realistic Bayesian quantum metrology tasks accomplishing all the relevant challenges, without relying on any a priori knowledge of the system. To overcome this need, a neural network is trained directly on experimental data to learn the multiparameter Bayesian update. Then the system is set at its optimal working point through feedback provided by a reinforcement learning algorithm trained to reconstruct and enhance experiment heuristics of the investigated quantum sensor. Notably, we prove experimentally the achievement of higher estimation performances than standard methods, demonstrating the strength of the combination of these two black-box algorithms on an integrated photonic circuit. Our work represents an important step toward fully artificial intelligence-based quantum metrology.
期刊介绍:
Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential.
The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria:
-New concepts in terms of fundamental research with great impact and significance
-State-of-the-art technologies in terms of novel methods for important applications
-Reviews of recent major advances and discoveries and state-of-the-art benchmarking.
The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.