D. Seok, Sanghyun Lee, Minjae Kim, Jaeouk Cho, Chul Kim
{"title":"可穿戴EEG和PPG传感器系统的运动伪影去除技术","authors":"D. Seok, Sanghyun Lee, Minjae Kim, Jaeouk Cho, Chul Kim","doi":"10.3389/felec.2021.685513","DOIUrl":null,"url":null,"abstract":"Removal of motion artifacts is a critical challenge, especially in wearable electroencephalography (EEG) and photoplethysmography (PPG) devices that are exposed to daily movements. Recently, the significance of motion artifact removal techniques has increased since EEG-based brain–computer interfaces (BCI) and daily healthcare usage of wearable PPG devices were spotlighted. In this article, the development on EEG and PPG sensor systems is introduced. Then, understanding of motion artifact and its reduction methods implemented by hardware and/or software fashions are reviewed. Various electrode types, analog readout circuits, and signal processing techniques are studied for EEG motion artifact removal. In addition, recent in-ear EEG techniques with motion artifact reduction are also introduced. Furthermore, techniques compensating independent/dependent motion artifacts are presented for PPG.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Motion Artifact Removal Techniques for Wearable EEG and PPG Sensor Systems\",\"authors\":\"D. Seok, Sanghyun Lee, Minjae Kim, Jaeouk Cho, Chul Kim\",\"doi\":\"10.3389/felec.2021.685513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Removal of motion artifacts is a critical challenge, especially in wearable electroencephalography (EEG) and photoplethysmography (PPG) devices that are exposed to daily movements. Recently, the significance of motion artifact removal techniques has increased since EEG-based brain–computer interfaces (BCI) and daily healthcare usage of wearable PPG devices were spotlighted. In this article, the development on EEG and PPG sensor systems is introduced. Then, understanding of motion artifact and its reduction methods implemented by hardware and/or software fashions are reviewed. Various electrode types, analog readout circuits, and signal processing techniques are studied for EEG motion artifact removal. In addition, recent in-ear EEG techniques with motion artifact reduction are also introduced. Furthermore, techniques compensating independent/dependent motion artifacts are presented for PPG.\",\"PeriodicalId\":73081,\"journal\":{\"name\":\"Frontiers in electronics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/felec.2021.685513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/felec.2021.685513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Motion Artifact Removal Techniques for Wearable EEG and PPG Sensor Systems
Removal of motion artifacts is a critical challenge, especially in wearable electroencephalography (EEG) and photoplethysmography (PPG) devices that are exposed to daily movements. Recently, the significance of motion artifact removal techniques has increased since EEG-based brain–computer interfaces (BCI) and daily healthcare usage of wearable PPG devices were spotlighted. In this article, the development on EEG and PPG sensor systems is introduced. Then, understanding of motion artifact and its reduction methods implemented by hardware and/or software fashions are reviewed. Various electrode types, analog readout circuits, and signal processing techniques are studied for EEG motion artifact removal. In addition, recent in-ear EEG techniques with motion artifact reduction are also introduced. Furthermore, techniques compensating independent/dependent motion artifacts are presented for PPG.