数学物理中若干线性分数阶偏微分方程的解

Q4 Mathematics
Ranjit R. Dhunde, G. L. Waghmare
{"title":"数学物理中若干线性分数阶偏微分方程的解","authors":"Ranjit R. Dhunde, G. L. Waghmare","doi":"10.18311/JIMS/2018/20144","DOIUrl":null,"url":null,"abstract":"In this article, we use double Laplace transform method to find solution of general linear fractional partial differential equation in terms of Mittag-Leffler function subject to the initial and boundary conditions. The efficiency of the method is illustrated by considering fractional wave and diffusion equations, Klein-Gordon equation, Burger’s equation, Fokker-Planck equation, KdV equation, and KdV-Burger’s equation of mathematical physics.","PeriodicalId":38246,"journal":{"name":"Journal of the Indian Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Solutions of Some Linear Fractional Partial Differential Equations in Mathematical Physics\",\"authors\":\"Ranjit R. Dhunde, G. L. Waghmare\",\"doi\":\"10.18311/JIMS/2018/20144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we use double Laplace transform method to find solution of general linear fractional partial differential equation in terms of Mittag-Leffler function subject to the initial and boundary conditions. The efficiency of the method is illustrated by considering fractional wave and diffusion equations, Klein-Gordon equation, Burger’s equation, Fokker-Planck equation, KdV equation, and KdV-Burger’s equation of mathematical physics.\",\"PeriodicalId\":38246,\"journal\":{\"name\":\"Journal of the Indian Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/JIMS/2018/20144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/JIMS/2018/20144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们使用双拉普拉斯变换方法,在初始条件和边界条件下,用Mittag-Leffler函数求解一般线性分式偏微分方程。通过考虑分数波和扩散方程、Klein-Gordon方程、Burger方程、Fokker-Planck方程、KdV方程和数学物理的KdV-Burger方程,说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solutions of Some Linear Fractional Partial Differential Equations in Mathematical Physics
In this article, we use double Laplace transform method to find solution of general linear fractional partial differential equation in terms of Mittag-Leffler function subject to the initial and boundary conditions. The efficiency of the method is illustrated by considering fractional wave and diffusion equations, Klein-Gordon equation, Burger’s equation, Fokker-Planck equation, KdV equation, and KdV-Burger’s equation of mathematical physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Indian Mathematical Society
Journal of the Indian Mathematical Society Mathematics-Mathematics (all)
CiteScore
0.50
自引率
0.00%
发文量
32
期刊介绍: The Society began publishing Progress Reports right from 1907 and then the Journal from 1908 (The 1908 and 1909 issues of the Journal are entitled "The Journal of the Indian Mathematical Club"). From 1910 onwards,it is published as its current title ''the Journal of Indian Mathematical Society. The four issues of the Journal constitute a single volume and it is published in two parts: issues 1 and 2 (January to June) as one part and issues 3 and 4 (July to December) as the second part. The four issues of the Mathematics Student (another periodical of the Society) are published as a single yearly volume. Only the original research papers of high quality are published in the Journal of Indian Mathematical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信