B. Azarhoushang, M. Kadivar, Robert Bösinger, Sergey Shamray, Ali Zahedi, A. Daneshi
{"title":"结构砂轮高速高效磨削CMC","authors":"B. Azarhoushang, M. Kadivar, Robert Bösinger, Sergey Shamray, Ali Zahedi, A. Daneshi","doi":"10.1504/IJAT.2019.097964","DOIUrl":null,"url":null,"abstract":"The implantation of ceramic matrix composites (CMCs) is limited due to their high machining costs. To overcome this problem, modified grinding wheels, one macro-structured by segmenting and another laser-structured were used. The grinding tests were carried out at different material removal rates and cutting speeds. The grinding forces, surface roughness, and induced residual stress were compared. The results showed that the wheel structuring resulted in a better performance of the grinding wheel. The grinding forces were respectively 30% and 20% lower in the case of segmented wheel and laser-structured wheel in comparison with the conventional grinding. In addition, the tensile residual stress was reduced as a negative output of the grinding process via structuring. A high-speed high-efficient grinding of CMCs without presence of surface damage was achieved by optimising the process parameters. The material removal rate could be elevated without changing the grinding forces with application of the structured wheel.","PeriodicalId":39039,"journal":{"name":"International Journal of Abrasive Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJAT.2019.097964","citationCount":"4","resultStr":"{\"title\":\"High-speed high-efficient grinding of CMCs with structured grinding wheels\",\"authors\":\"B. Azarhoushang, M. Kadivar, Robert Bösinger, Sergey Shamray, Ali Zahedi, A. Daneshi\",\"doi\":\"10.1504/IJAT.2019.097964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implantation of ceramic matrix composites (CMCs) is limited due to their high machining costs. To overcome this problem, modified grinding wheels, one macro-structured by segmenting and another laser-structured were used. The grinding tests were carried out at different material removal rates and cutting speeds. The grinding forces, surface roughness, and induced residual stress were compared. The results showed that the wheel structuring resulted in a better performance of the grinding wheel. The grinding forces were respectively 30% and 20% lower in the case of segmented wheel and laser-structured wheel in comparison with the conventional grinding. In addition, the tensile residual stress was reduced as a negative output of the grinding process via structuring. A high-speed high-efficient grinding of CMCs without presence of surface damage was achieved by optimising the process parameters. The material removal rate could be elevated without changing the grinding forces with application of the structured wheel.\",\"PeriodicalId\":39039,\"journal\":{\"name\":\"International Journal of Abrasive Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJAT.2019.097964\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Abrasive Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAT.2019.097964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Abrasive Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAT.2019.097964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
High-speed high-efficient grinding of CMCs with structured grinding wheels
The implantation of ceramic matrix composites (CMCs) is limited due to their high machining costs. To overcome this problem, modified grinding wheels, one macro-structured by segmenting and another laser-structured were used. The grinding tests were carried out at different material removal rates and cutting speeds. The grinding forces, surface roughness, and induced residual stress were compared. The results showed that the wheel structuring resulted in a better performance of the grinding wheel. The grinding forces were respectively 30% and 20% lower in the case of segmented wheel and laser-structured wheel in comparison with the conventional grinding. In addition, the tensile residual stress was reduced as a negative output of the grinding process via structuring. A high-speed high-efficient grinding of CMCs without presence of surface damage was achieved by optimising the process parameters. The material removal rate could be elevated without changing the grinding forces with application of the structured wheel.