Caiyun Xu, Qian Song, Naǧme Merdanoǧlu, Hang Liu, E. Klemm
{"title":"Fe/MOR催化剂上用H2O2有效直接氧化甲烷制备C1氧合物的单体Fe物种鉴定","authors":"Caiyun Xu, Qian Song, Naǧme Merdanoǧlu, Hang Liu, E. Klemm","doi":"10.3390/methane1020010","DOIUrl":null,"url":null,"abstract":"Exploring advanced catalysts and reaction systems operated at mild reaction conditions is crucial for conducting the direct methane oxidation reaction toward oxygenate products. Many efforts have been put into research on pentasil−type (MFI) zeolites based on mononuclear and/or binuclear iron sites, using H2O2 as the oxidant. In this work, we present a modified liquid ion−exchange method to better control Fe loading in a mordenite−type (MOR) zeolite with a Si/Al molar ratio of 9. The optimized Fe/MOR catalyst showed excellent performance in the direct methane oxidation reaction with turnover frequencies (TOFs) of 555 h−1 to C1 oxygenates, significantly better than the reported activity. Multiple comparative experiments were conducted to reveal the mechanism behind the performance. Strikingly, the active sites in the Fe/MOR catalyst were found to be mononuclear iron sites, confirmed by transmission electron microscopy (TEM), ultraviolet−visible diffuse reflectance spectroscopy (UV−vis DRS), and X-ray absorption spectroscopy (XAS). Increasing the iron loading led to the aggregation of the iron sites, which tend to trigger undesirable side reactions (i.e., H2O2 decomposition and over−oxidation), resulting in a significant decrease in TOFs to C1 oxygenates.","PeriodicalId":74177,"journal":{"name":"Methane","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identifying Monomeric Fe Species for Efficient Direct Methane Oxidation to C1 Oxygenates with H2O2 over Fe/MOR Catalysts\",\"authors\":\"Caiyun Xu, Qian Song, Naǧme Merdanoǧlu, Hang Liu, E. Klemm\",\"doi\":\"10.3390/methane1020010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring advanced catalysts and reaction systems operated at mild reaction conditions is crucial for conducting the direct methane oxidation reaction toward oxygenate products. Many efforts have been put into research on pentasil−type (MFI) zeolites based on mononuclear and/or binuclear iron sites, using H2O2 as the oxidant. In this work, we present a modified liquid ion−exchange method to better control Fe loading in a mordenite−type (MOR) zeolite with a Si/Al molar ratio of 9. The optimized Fe/MOR catalyst showed excellent performance in the direct methane oxidation reaction with turnover frequencies (TOFs) of 555 h−1 to C1 oxygenates, significantly better than the reported activity. Multiple comparative experiments were conducted to reveal the mechanism behind the performance. Strikingly, the active sites in the Fe/MOR catalyst were found to be mononuclear iron sites, confirmed by transmission electron microscopy (TEM), ultraviolet−visible diffuse reflectance spectroscopy (UV−vis DRS), and X-ray absorption spectroscopy (XAS). Increasing the iron loading led to the aggregation of the iron sites, which tend to trigger undesirable side reactions (i.e., H2O2 decomposition and over−oxidation), resulting in a significant decrease in TOFs to C1 oxygenates.\",\"PeriodicalId\":74177,\"journal\":{\"name\":\"Methane\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methane\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/methane1020010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methane","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/methane1020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
探索先进的催化剂和在温和反应条件下运行的反应体系是进行甲烷直接氧化反应的关键。以H2O2为氧化剂,研究了基于单核和/或双核铁位的五氟硅(MFI)分子筛。在这项工作中,我们提出了一种改进的液体离子交换方法,以更好地控制Si/Al摩尔比为9的丝光沸石型(MOR)沸石中的铁负载。优化后的Fe/MOR催化剂在甲烷直接氧化反应中表现出优异的性能,转换频率(TOFs)为555 h−1,明显优于已有报道的活性。多次对比实验揭示了性能背后的机制。值得注意的是,通过透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV - vis DRS)和x射线吸收光谱(XAS)证实,Fe/MOR催化剂中的活性位点是单核铁位点。铁负载的增加导致铁位点的聚集,这往往会引发不良的副反应(即H2O2分解和过氧化),导致TOFs到C1氧合物的显著减少。
Identifying Monomeric Fe Species for Efficient Direct Methane Oxidation to C1 Oxygenates with H2O2 over Fe/MOR Catalysts
Exploring advanced catalysts and reaction systems operated at mild reaction conditions is crucial for conducting the direct methane oxidation reaction toward oxygenate products. Many efforts have been put into research on pentasil−type (MFI) zeolites based on mononuclear and/or binuclear iron sites, using H2O2 as the oxidant. In this work, we present a modified liquid ion−exchange method to better control Fe loading in a mordenite−type (MOR) zeolite with a Si/Al molar ratio of 9. The optimized Fe/MOR catalyst showed excellent performance in the direct methane oxidation reaction with turnover frequencies (TOFs) of 555 h−1 to C1 oxygenates, significantly better than the reported activity. Multiple comparative experiments were conducted to reveal the mechanism behind the performance. Strikingly, the active sites in the Fe/MOR catalyst were found to be mononuclear iron sites, confirmed by transmission electron microscopy (TEM), ultraviolet−visible diffuse reflectance spectroscopy (UV−vis DRS), and X-ray absorption spectroscopy (XAS). Increasing the iron loading led to the aggregation of the iron sites, which tend to trigger undesirable side reactions (i.e., H2O2 decomposition and over−oxidation), resulting in a significant decrease in TOFs to C1 oxygenates.