合同旋转次数

IF 0.7 1区 数学 Q2 MATHEMATICS
M. Laurent, A. Nogueira
{"title":"合同旋转次数","authors":"M. Laurent, A. Nogueira","doi":"10.3934/JMD.2018007","DOIUrl":null,"url":null,"abstract":"Let \\begin{document} $0 . We consider the one-parameter family of circle \\begin{document} $\\lambda$ \\end{document} -affine contractions \\begin{document} $f_\\delta:x \\in [0,1) \\mapsto \\lambda x + \\delta \\; {\\rm mod}\\,1 $ \\end{document} , where \\begin{document} $0 \\le \\delta . Let \\begin{document} $\\rho$ \\end{document} be the rotation number of the map \\begin{document} $f_\\delta$ \\end{document} . We will give some numerical relations between the values of \\begin{document} $\\lambda,\\delta$ \\end{document} and \\begin{document} $\\rho$ \\end{document} , essentially using Hecke-Mahler series and a tree structure. When both parameters \\begin{document} $\\lambda$ \\end{document} and \\begin{document} $\\delta$ \\end{document} are algebraic numbers, we show that \\begin{document} $\\rho$ \\end{document} is a rational number. Moreover, in the case \\begin{document} $\\lambda$ \\end{document} and \\begin{document} $\\delta$ \\end{document} are rational, we give an explicit upper bound for the height of \\begin{document} $\\rho$ \\end{document} under some assumptions on \\begin{document} $\\lambda$ \\end{document} .","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":"12 1","pages":"175-191"},"PeriodicalIF":0.7000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Rotation number of contracted rotations\",\"authors\":\"M. Laurent, A. Nogueira\",\"doi\":\"10.3934/JMD.2018007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\begin{document} $0 . We consider the one-parameter family of circle \\\\begin{document} $\\\\lambda$ \\\\end{document} -affine contractions \\\\begin{document} $f_\\\\delta:x \\\\in [0,1) \\\\mapsto \\\\lambda x + \\\\delta \\\\; {\\\\rm mod}\\\\,1 $ \\\\end{document} , where \\\\begin{document} $0 \\\\le \\\\delta . Let \\\\begin{document} $\\\\rho$ \\\\end{document} be the rotation number of the map \\\\begin{document} $f_\\\\delta$ \\\\end{document} . We will give some numerical relations between the values of \\\\begin{document} $\\\\lambda,\\\\delta$ \\\\end{document} and \\\\begin{document} $\\\\rho$ \\\\end{document} , essentially using Hecke-Mahler series and a tree structure. When both parameters \\\\begin{document} $\\\\lambda$ \\\\end{document} and \\\\begin{document} $\\\\delta$ \\\\end{document} are algebraic numbers, we show that \\\\begin{document} $\\\\rho$ \\\\end{document} is a rational number. Moreover, in the case \\\\begin{document} $\\\\lambda$ \\\\end{document} and \\\\begin{document} $\\\\delta$ \\\\end{document} are rational, we give an explicit upper bound for the height of \\\\begin{document} $\\\\rho$ \\\\end{document} under some assumptions on \\\\begin{document} $\\\\lambda$ \\\\end{document} .\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\"12 1\",\"pages\":\"175-191\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/JMD.2018007\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JMD.2018007","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

摘要

让\开始{document}$0。我们考虑圆的单参数族\ begin{document}$\lambda$\end{document}-仿射收缩\ begin{document}$f_\delta:x\in[0,1)\mapsto\lambda x+\delta\;{\rm-mod}\,1$\end},其中\ begin}$0\le\delta。设\ begin。我们将给出\begin{document}$\lambda、\delta$\end{document}和\begin{document}$\rho$\end{document}的值之间的一些数值关系,本质上使用Hecke-Mahler级数和树结构。当参数\ begin{document}$\lambda$\end{document}和\ begin{document}$\delta$\end{document}都是代数数时,我们证明\ begin}document}$\rho$\end}是有理数。此外,在\begin{document}$\lambda$\end{document}和\begin{document}$\delta$\end{document}是有理的情况下,我们给出了在\begin{document}$\lambda$\end{document}上的一些假设下\begin{document}$\rho$\end}的高度的显式上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotation number of contracted rotations
Let \begin{document} $0 . We consider the one-parameter family of circle \begin{document} $\lambda$ \end{document} -affine contractions \begin{document} $f_\delta:x \in [0,1) \mapsto \lambda x + \delta \; {\rm mod}\,1 $ \end{document} , where \begin{document} $0 \le \delta . Let \begin{document} $\rho$ \end{document} be the rotation number of the map \begin{document} $f_\delta$ \end{document} . We will give some numerical relations between the values of \begin{document} $\lambda,\delta$ \end{document} and \begin{document} $\rho$ \end{document} , essentially using Hecke-Mahler series and a tree structure. When both parameters \begin{document} $\lambda$ \end{document} and \begin{document} $\delta$ \end{document} are algebraic numbers, we show that \begin{document} $\rho$ \end{document} is a rational number. Moreover, in the case \begin{document} $\lambda$ \end{document} and \begin{document} $\delta$ \end{document} are rational, we give an explicit upper bound for the height of \begin{document} $\rho$ \end{document} under some assumptions on \begin{document} $\lambda$ \end{document} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including: Number theory Symplectic geometry Differential geometry Rigidity Quantum chaos Teichmüller theory Geometric group theory Harmonic analysis on manifolds. The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信