{"title":"ECoG数据中的相位波分析","authors":"Alexandre Aksenov, A. Beuter","doi":"10.1051/mmnp/2021045","DOIUrl":null,"url":null,"abstract":"Subdural ECoG data recorded from the matrix of electrodes during syllable pronunciation are analyzed by the method of circular-linear regression. Phase waves in 1D electrode arrays and in the whole 2D set of electrodes are detected, and their spatial organization and temporal evolution are studied. Phase portraits of wave vectors indicate the presence of sources, sinks, and saddle points. The analysis of temporal evolution of phase portraits shows that they changed more at the beginning of syllable pronunciation. Furthermore, wave sources were more stable in their localization during the pronunciation. Overall, in spite of large variability of phase portraits, they represent some characterization of the dynamics of electric potential in the cerebral cortex.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of phase waves in the ECoG data\",\"authors\":\"Alexandre Aksenov, A. Beuter\",\"doi\":\"10.1051/mmnp/2021045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subdural ECoG data recorded from the matrix of electrodes during syllable pronunciation are analyzed by the method of circular-linear regression. Phase waves in 1D electrode arrays and in the whole 2D set of electrodes are detected, and their spatial organization and temporal evolution are studied. Phase portraits of wave vectors indicate the presence of sources, sinks, and saddle points. The analysis of temporal evolution of phase portraits shows that they changed more at the beginning of syllable pronunciation. Furthermore, wave sources were more stable in their localization during the pronunciation. Overall, in spite of large variability of phase portraits, they represent some characterization of the dynamics of electric potential in the cerebral cortex.\",\"PeriodicalId\":18285,\"journal\":{\"name\":\"Mathematical Modelling of Natural Phenomena\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling of Natural Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/mmnp/2021045\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2021045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Subdural ECoG data recorded from the matrix of electrodes during syllable pronunciation are analyzed by the method of circular-linear regression. Phase waves in 1D electrode arrays and in the whole 2D set of electrodes are detected, and their spatial organization and temporal evolution are studied. Phase portraits of wave vectors indicate the presence of sources, sinks, and saddle points. The analysis of temporal evolution of phase portraits shows that they changed more at the beginning of syllable pronunciation. Furthermore, wave sources were more stable in their localization during the pronunciation. Overall, in spite of large variability of phase portraits, they represent some characterization of the dynamics of electric potential in the cerebral cortex.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.