Tongyun Luo , Jianye Zhao , Yujuan Gu , Shuo Zhang , Xi Qiao , Wen Tian , Yangchun Han
{"title":"基于视觉图像和深度学习的杂草种子分类","authors":"Tongyun Luo , Jianye Zhao , Yujuan Gu , Shuo Zhang , Xi Qiao , Wen Tian , Yangchun Han","doi":"10.1016/j.inpa.2021.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Weeds are mainly spread by weed seeds being mixed with agricultural and forestry crop seeds, grain, animal hair, and other plant products, and disturb the growing environment of target plants such as crops and wild native plants. The accurate and efficient classification of weed seeds is important for the effective management and control of weeds. However, classification remains mainly dependent on destructive sampling-based manual inspection, which has a high cost and rather low flux. We considered that this problem could be solved using a nondestructive intelligent image recognition method. First, on the basis of the establishment of the image acquisition system for weed seeds, images of single weed seeds were rapidly and completely segmented, and a total of 47 696 samples of 140 species of weed seeds and foreign materials remained. Then, six popular and novel deep Convolutional Neural Network (CNN) models are compared to identify the best method for intelligently identifying 140 species of weed seeds. Of these samples, 33 600 samples are randomly selected as the training dataset for model training, and the remaining 14 096 samples are used as the testing dataset for model testing. AlexNet and GoogLeNet emerged from the quantitative evaluation as the best methods. AlexNet has strong classification accuracy and efficiency (low time consumption), and GoogLeNet has the best classification accuracy. A suitable CNN model for weed seed classification could be selected according to specific identification accuracy requirements and time costs of applications. This research is beneficial for developing a detection system for weed seeds in various applications. The resolution of taxonomic issues and problems associated with the identification of these weed seeds may allow for more effective management and control.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 1","pages":"Pages 40-51"},"PeriodicalIF":7.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Classification of weed seeds based on visual images and deep learning\",\"authors\":\"Tongyun Luo , Jianye Zhao , Yujuan Gu , Shuo Zhang , Xi Qiao , Wen Tian , Yangchun Han\",\"doi\":\"10.1016/j.inpa.2021.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Weeds are mainly spread by weed seeds being mixed with agricultural and forestry crop seeds, grain, animal hair, and other plant products, and disturb the growing environment of target plants such as crops and wild native plants. The accurate and efficient classification of weed seeds is important for the effective management and control of weeds. However, classification remains mainly dependent on destructive sampling-based manual inspection, which has a high cost and rather low flux. We considered that this problem could be solved using a nondestructive intelligent image recognition method. First, on the basis of the establishment of the image acquisition system for weed seeds, images of single weed seeds were rapidly and completely segmented, and a total of 47 696 samples of 140 species of weed seeds and foreign materials remained. Then, six popular and novel deep Convolutional Neural Network (CNN) models are compared to identify the best method for intelligently identifying 140 species of weed seeds. Of these samples, 33 600 samples are randomly selected as the training dataset for model training, and the remaining 14 096 samples are used as the testing dataset for model testing. AlexNet and GoogLeNet emerged from the quantitative evaluation as the best methods. AlexNet has strong classification accuracy and efficiency (low time consumption), and GoogLeNet has the best classification accuracy. A suitable CNN model for weed seed classification could be selected according to specific identification accuracy requirements and time costs of applications. This research is beneficial for developing a detection system for weed seeds in various applications. The resolution of taxonomic issues and problems associated with the identification of these weed seeds may allow for more effective management and control.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"10 1\",\"pages\":\"Pages 40-51\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317321000809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Classification of weed seeds based on visual images and deep learning
Weeds are mainly spread by weed seeds being mixed with agricultural and forestry crop seeds, grain, animal hair, and other plant products, and disturb the growing environment of target plants such as crops and wild native plants. The accurate and efficient classification of weed seeds is important for the effective management and control of weeds. However, classification remains mainly dependent on destructive sampling-based manual inspection, which has a high cost and rather low flux. We considered that this problem could be solved using a nondestructive intelligent image recognition method. First, on the basis of the establishment of the image acquisition system for weed seeds, images of single weed seeds were rapidly and completely segmented, and a total of 47 696 samples of 140 species of weed seeds and foreign materials remained. Then, six popular and novel deep Convolutional Neural Network (CNN) models are compared to identify the best method for intelligently identifying 140 species of weed seeds. Of these samples, 33 600 samples are randomly selected as the training dataset for model training, and the remaining 14 096 samples are used as the testing dataset for model testing. AlexNet and GoogLeNet emerged from the quantitative evaluation as the best methods. AlexNet has strong classification accuracy and efficiency (low time consumption), and GoogLeNet has the best classification accuracy. A suitable CNN model for weed seed classification could be selected according to specific identification accuracy requirements and time costs of applications. This research is beneficial for developing a detection system for weed seeds in various applications. The resolution of taxonomic issues and problems associated with the identification of these weed seeds may allow for more effective management and control.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining