UT法和CM法对纤维混凝土和高强混凝土高温效应的对比试验研究

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY
Javad Royaei, K. Sadeghi, Fatemeh Nouban
{"title":"UT法和CM法对纤维混凝土和高强混凝土高温效应的对比试验研究","authors":"Javad Royaei, K. Sadeghi, Fatemeh Nouban","doi":"10.14311/ap.2023.63.0208","DOIUrl":null,"url":null,"abstract":"In this paper, a 28-day compressive strength test has been performed on samples including normal fibre concrete and high-strength concrete. The ultrasonic test (UT) as a non-destructive and compression machine (CM) as a destructive test were applied, and the results were compared. To investigate the effect of temperature, the samples were subjected to 200, 400, 600, 800, 1000, and 1200 degrees Celsius and the exposure time was equal to 30, 45, 60, 90, 120, and 180 minutes. Based on the results, it was observed that the minimum error observed between the UT and CM tests was 2.9 % and the maximum error between the two methods was 10.9 %, which shows the high accuracy of the ultrasonic testing method in determining the specimen’s strength. The average probable error of the method is determined to be around 6.8 %.Based on the results of the average decrease in compressive strength versus the heat exposure time, it is observed that the trend of changes and decrease in resistance over time for both types of tests is almost the same and has a negligible difference. At the end of 180 minutes of exposure, the resistance ratio for the ultrasonic test is 69.8 %, and 71.1 % for the compression machine. Furthermore, according to the average reduction in compressive strength due to heat exposure time, it has been observed that the results of the UT and UM tests have slight numerical differences, however, the trend of changes and reduction in resistance over time for both types of tests is almost the same. Finally, the accuracy of the UT in determining the compressive strength of specimens at high temperatures is fully confirmed.","PeriodicalId":45804,"journal":{"name":"Acta Polytechnica","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative experimental investigation of high-temperature effect on fibre concrete and high strength concrete using UT and CM methods\",\"authors\":\"Javad Royaei, K. Sadeghi, Fatemeh Nouban\",\"doi\":\"10.14311/ap.2023.63.0208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a 28-day compressive strength test has been performed on samples including normal fibre concrete and high-strength concrete. The ultrasonic test (UT) as a non-destructive and compression machine (CM) as a destructive test were applied, and the results were compared. To investigate the effect of temperature, the samples were subjected to 200, 400, 600, 800, 1000, and 1200 degrees Celsius and the exposure time was equal to 30, 45, 60, 90, 120, and 180 minutes. Based on the results, it was observed that the minimum error observed between the UT and CM tests was 2.9 % and the maximum error between the two methods was 10.9 %, which shows the high accuracy of the ultrasonic testing method in determining the specimen’s strength. The average probable error of the method is determined to be around 6.8 %.Based on the results of the average decrease in compressive strength versus the heat exposure time, it is observed that the trend of changes and decrease in resistance over time for both types of tests is almost the same and has a negligible difference. At the end of 180 minutes of exposure, the resistance ratio for the ultrasonic test is 69.8 %, and 71.1 % for the compression machine. Furthermore, according to the average reduction in compressive strength due to heat exposure time, it has been observed that the results of the UT and UM tests have slight numerical differences, however, the trend of changes and reduction in resistance over time for both types of tests is almost the same. Finally, the accuracy of the UT in determining the compressive strength of specimens at high temperatures is fully confirmed.\",\"PeriodicalId\":45804,\"journal\":{\"name\":\"Acta Polytechnica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Polytechnica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/ap.2023.63.0208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/ap.2023.63.0208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文对普通纤维混凝土和高强混凝土进行了为期28天的抗压强度试验。应用超声检测(UT)作为无损检测和压缩机(CM)作为无损测试,并对结果进行了比较。为了研究温度的影响,将样品置于200、400、600、800、1000和1200摄氏度下,暴露时间等于30、45、60、90、120和180分钟。根据结果,观察到UT和CM测试之间观察到的最小误差为2.9%,两种方法之间的最大误差为10.9%,这表明超声波测试方法在确定试样强度方面具有很高的准确性。该方法的平均可能误差约为6.8%。根据抗压强度随热暴露时间的平均下降结果,可以观察到两种类型的试验的阻力随时间的变化和下降趋势几乎相同,差异可以忽略不计。在暴露180分钟结束时,超声波测试的阻力比为69.8%,而压缩机的阻力比则为71.1%。此外,根据热暴露时间导致的抗压强度的平均降低,已经观察到UT和UM测试的结果具有轻微的数值差异,然而,两种类型的测试的电阻随时间变化和降低的趋势几乎相同。最后,充分证实了UT在确定高温下试样抗压强度方面的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative experimental investigation of high-temperature effect on fibre concrete and high strength concrete using UT and CM methods
In this paper, a 28-day compressive strength test has been performed on samples including normal fibre concrete and high-strength concrete. The ultrasonic test (UT) as a non-destructive and compression machine (CM) as a destructive test were applied, and the results were compared. To investigate the effect of temperature, the samples were subjected to 200, 400, 600, 800, 1000, and 1200 degrees Celsius and the exposure time was equal to 30, 45, 60, 90, 120, and 180 minutes. Based on the results, it was observed that the minimum error observed between the UT and CM tests was 2.9 % and the maximum error between the two methods was 10.9 %, which shows the high accuracy of the ultrasonic testing method in determining the specimen’s strength. The average probable error of the method is determined to be around 6.8 %.Based on the results of the average decrease in compressive strength versus the heat exposure time, it is observed that the trend of changes and decrease in resistance over time for both types of tests is almost the same and has a negligible difference. At the end of 180 minutes of exposure, the resistance ratio for the ultrasonic test is 69.8 %, and 71.1 % for the compression machine. Furthermore, according to the average reduction in compressive strength due to heat exposure time, it has been observed that the results of the UT and UM tests have slight numerical differences, however, the trend of changes and reduction in resistance over time for both types of tests is almost the same. Finally, the accuracy of the UT in determining the compressive strength of specimens at high temperatures is fully confirmed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Polytechnica
Acta Polytechnica ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
12.50%
发文量
49
审稿时长
24 weeks
期刊介绍: Acta Polytechnica is a scientific journal published by CTU in Prague. The main title, Acta Polytechnica, is accompanied by the subtitle Journal of Advanced Engineering, which defines the scope of the journal more precisely - Acta Polytechnica covers a wide spectrum of engineering topics, physics and mathematics. Our aim is to be a high-quality multi-disciplinary journal publishing the results of basic research and also applied research. We place emphasis on the quality of all published papers. The journal should also serve as a bridge between basic research in natural sciences and applied research in all technical disciplines. The innovative research results published by young researchers or by postdoctoral fellows, and also the high-quality papers by researchers from the international scientific community, reflect the good position of CTU in the World University Rankings. We hope that you will find our journal interesting, and that it will serve as a valuable source of scientific information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信