数列的对偶,Riordan多项式,和Sheffer多项式

IF 0.8 Q2 MATHEMATICS
T. He, J. L. Ramírez
{"title":"数列的对偶,Riordan多项式,和Sheffer多项式","authors":"T. He, J. L. Ramírez","doi":"10.1515/spma-2021-0153","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we introduce different families of numerical and polynomial sequences by using Riordan pseudo involutions and Sheffer polynomial sequences. Many examples are given including dual of Hermite numbers and polynomials, dual of Bell numbers and polynomials, among other. The coefficients of some of these polynomials are related to the counting of different families of set partitions and permutations. We also studied the dual of Catalan numbers and dual of Fuss-Catalan numbers, giving several combinatorial identities.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"10 1","pages":"153 - 165"},"PeriodicalIF":0.8000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The dual of number sequences, Riordan polynomials, and Sheffer polynomials\",\"authors\":\"T. He, J. L. Ramírez\",\"doi\":\"10.1515/spma-2021-0153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we introduce different families of numerical and polynomial sequences by using Riordan pseudo involutions and Sheffer polynomial sequences. Many examples are given including dual of Hermite numbers and polynomials, dual of Bell numbers and polynomials, among other. The coefficients of some of these polynomials are related to the counting of different families of set partitions and permutations. We also studied the dual of Catalan numbers and dual of Fuss-Catalan numbers, giving several combinatorial identities.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"10 1\",\"pages\":\"153 - 165\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2021-0153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2021-0153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文利用Riordan伪对合和Sheffer多项式序列介绍了不同族的数值序列和多项式序列。给出了许多例子,包括埃尔米特数和多项式的对偶、贝尔数和多项式对偶等。其中一些多项式的系数与集合划分和排列的不同族的计数有关。我们还研究了加泰罗尼亚数的对偶和Fuss-Catalan数的对偶,给出了几个组合恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The dual of number sequences, Riordan polynomials, and Sheffer polynomials
Abstract In this paper we introduce different families of numerical and polynomial sequences by using Riordan pseudo involutions and Sheffer polynomial sequences. Many examples are given including dual of Hermite numbers and polynomials, dual of Bell numbers and polynomials, among other. The coefficients of some of these polynomials are related to the counting of different families of set partitions and permutations. We also studied the dual of Catalan numbers and dual of Fuss-Catalan numbers, giving several combinatorial identities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信