{"title":"威廉姆森定理中辛矩阵的块摄动","authors":"G. Babu, H. K. Mishra","doi":"10.4153/S0008439523000620","DOIUrl":null,"url":null,"abstract":"Williamson's theorem states that for any $2n \\times 2n$ real positive definite matrix $A$, there exists a $2n \\times 2n$ real symplectic matrix $S$ such that $S^TAS=D \\oplus D$, where $D$ is an $n\\times n$ diagonal matrix with positive diagonal entries which are known as the symplectic eigenvalues of $A$. Let $H$ be any $2n \\times 2n$ real symmetric matrix such that the perturbed matrix $A+H$ is also positive definite. In this paper, we show that any symplectic matrix $\\tilde{S}$ diagonalizing $A+H$ in Williamson's theorem is of the form $\\tilde{S}=S Q+\\mathcal{O}(\\|H\\|)$, where $Q$ is a $2n \\times 2n$ real symplectic as well as orthogonal matrix. Moreover, $Q$ is in $\\textit{symplectic block diagonal}$ form with the block sizes given by twice the multiplicities of the symplectic eigenvalues of $A$. Consequently, we show that $\\tilde{S}$ and $S$ can be chosen so that $\\|\\tilde{S}-S\\|=\\mathcal{O}(\\|H\\|)$. Our results hold even if $A$ has repeated symplectic eigenvalues. This generalizes the stability result of symplectic matrices for non-repeated symplectic eigenvalues given by Idel, Gaona, and Wolf [$\\textit{Linear Algebra Appl., 525:45-58, 2017}$].","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Block perturbation of symplectic matrices in Williamson’s theorem\",\"authors\":\"G. Babu, H. K. Mishra\",\"doi\":\"10.4153/S0008439523000620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Williamson's theorem states that for any $2n \\\\times 2n$ real positive definite matrix $A$, there exists a $2n \\\\times 2n$ real symplectic matrix $S$ such that $S^TAS=D \\\\oplus D$, where $D$ is an $n\\\\times n$ diagonal matrix with positive diagonal entries which are known as the symplectic eigenvalues of $A$. Let $H$ be any $2n \\\\times 2n$ real symmetric matrix such that the perturbed matrix $A+H$ is also positive definite. In this paper, we show that any symplectic matrix $\\\\tilde{S}$ diagonalizing $A+H$ in Williamson's theorem is of the form $\\\\tilde{S}=S Q+\\\\mathcal{O}(\\\\|H\\\\|)$, where $Q$ is a $2n \\\\times 2n$ real symplectic as well as orthogonal matrix. Moreover, $Q$ is in $\\\\textit{symplectic block diagonal}$ form with the block sizes given by twice the multiplicities of the symplectic eigenvalues of $A$. Consequently, we show that $\\\\tilde{S}$ and $S$ can be chosen so that $\\\\|\\\\tilde{S}-S\\\\|=\\\\mathcal{O}(\\\\|H\\\\|)$. Our results hold even if $A$ has repeated symplectic eigenvalues. This generalizes the stability result of symplectic matrices for non-repeated symplectic eigenvalues given by Idel, Gaona, and Wolf [$\\\\textit{Linear Algebra Appl., 525:45-58, 2017}$].\",\"PeriodicalId\":55280,\"journal\":{\"name\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/S0008439523000620\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439523000620","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Block perturbation of symplectic matrices in Williamson’s theorem
Williamson's theorem states that for any $2n \times 2n$ real positive definite matrix $A$, there exists a $2n \times 2n$ real symplectic matrix $S$ such that $S^TAS=D \oplus D$, where $D$ is an $n\times n$ diagonal matrix with positive diagonal entries which are known as the symplectic eigenvalues of $A$. Let $H$ be any $2n \times 2n$ real symmetric matrix such that the perturbed matrix $A+H$ is also positive definite. In this paper, we show that any symplectic matrix $\tilde{S}$ diagonalizing $A+H$ in Williamson's theorem is of the form $\tilde{S}=S Q+\mathcal{O}(\|H\|)$, where $Q$ is a $2n \times 2n$ real symplectic as well as orthogonal matrix. Moreover, $Q$ is in $\textit{symplectic block diagonal}$ form with the block sizes given by twice the multiplicities of the symplectic eigenvalues of $A$. Consequently, we show that $\tilde{S}$ and $S$ can be chosen so that $\|\tilde{S}-S\|=\mathcal{O}(\|H\|)$. Our results hold even if $A$ has repeated symplectic eigenvalues. This generalizes the stability result of symplectic matrices for non-repeated symplectic eigenvalues given by Idel, Gaona, and Wolf [$\textit{Linear Algebra Appl., 525:45-58, 2017}$].
期刊介绍:
The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year.
To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics.
Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année.
Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.