利用植物降低建筑物中二氧化碳浓度的研究

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY
O. Franek, Č. Jarský
{"title":"利用植物降低建筑物中二氧化碳浓度的研究","authors":"O. Franek, Č. Jarský","doi":"10.14311/ap.2021.61.0617","DOIUrl":null,"url":null,"abstract":"The article deals with the implementation of plants in the indoor environment of buildings to reduce the concentration of CO2. Based on a specified model representing the internal environment of an office space, it was studied whether the requirement for the total amount of ventilated air could be reduced by using plants, thereby achieving savings of operating costs in the building ventilation sector. The present research describes the effect of plant implementation according to different levels of CO2 concentration of the supply air, specifically with values of 410 ppm corresponding to the year 2020, 550 ppm to the year 2050 and 670 ppm to the year 2100, as well as according to different levels of CO2 concentration in the indoor environment, namely 1000 ppm and 1500 ppm, the illumination of plants in the indoor environment is constant in the model, PPFD equals to 200 μmolm−2 s−1. Based on the computational model, it was found that the implemented plants can positively influence the requirement for the total amount of ventilated air, the most significant effect is in the case of a low indoor environment quality, with the CO2 concentration of 1500 ppm, and a high supply air quality 410 p˙pm. The simulation also showed that compared to 2020, by the year 2100, it will be necessary to increase the ventilation of the indoor environment by 25.1% to ensure the same quality of the indoorenvironment.","PeriodicalId":45804,"journal":{"name":"Acta Polytechnica","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On reducing CO2 concentration in buildings by using plants\",\"authors\":\"O. Franek, Č. Jarský\",\"doi\":\"10.14311/ap.2021.61.0617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article deals with the implementation of plants in the indoor environment of buildings to reduce the concentration of CO2. Based on a specified model representing the internal environment of an office space, it was studied whether the requirement for the total amount of ventilated air could be reduced by using plants, thereby achieving savings of operating costs in the building ventilation sector. The present research describes the effect of plant implementation according to different levels of CO2 concentration of the supply air, specifically with values of 410 ppm corresponding to the year 2020, 550 ppm to the year 2050 and 670 ppm to the year 2100, as well as according to different levels of CO2 concentration in the indoor environment, namely 1000 ppm and 1500 ppm, the illumination of plants in the indoor environment is constant in the model, PPFD equals to 200 μmolm−2 s−1. Based on the computational model, it was found that the implemented plants can positively influence the requirement for the total amount of ventilated air, the most significant effect is in the case of a low indoor environment quality, with the CO2 concentration of 1500 ppm, and a high supply air quality 410 p˙pm. The simulation also showed that compared to 2020, by the year 2100, it will be necessary to increase the ventilation of the indoor environment by 25.1% to ensure the same quality of the indoorenvironment.\",\"PeriodicalId\":45804,\"journal\":{\"name\":\"Acta Polytechnica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Polytechnica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/ap.2021.61.0617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/ap.2021.61.0617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文论述了在建筑物的室内环境中种植植物以降低二氧化碳浓度。根据代表办公空间内部环境的特定模型,研究了是否可以通过使用植物来减少对通风总量的要求,从而节省建筑通风部门的运营成本。本研究描述了根据供应空气的不同CO2浓度水平,特别是对应于2020年的410ppm、对应于2050年的550ppm和对应于2100年的670ppm的值,以及根据室内环境中的不同CO2含量水平,即1000ppm和1500ppm,实施工厂的效果,模型中植物在室内环境中的光照是恒定的,PPFD等于200μmolm−2s−1。基于计算模型,研究发现,所实施的工厂可以对通风总量的要求产生积极影响,最显著的影响是在室内环境质量较低的情况下,CO2浓度为1500ppm,供应空气质量较高的情况下为410p*pm。模拟还显示,与2020年相比,到2100年,有必要将室内环境的通风量增加25.1%,以确保室内环境的质量不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On reducing CO2 concentration in buildings by using plants
The article deals with the implementation of plants in the indoor environment of buildings to reduce the concentration of CO2. Based on a specified model representing the internal environment of an office space, it was studied whether the requirement for the total amount of ventilated air could be reduced by using plants, thereby achieving savings of operating costs in the building ventilation sector. The present research describes the effect of plant implementation according to different levels of CO2 concentration of the supply air, specifically with values of 410 ppm corresponding to the year 2020, 550 ppm to the year 2050 and 670 ppm to the year 2100, as well as according to different levels of CO2 concentration in the indoor environment, namely 1000 ppm and 1500 ppm, the illumination of plants in the indoor environment is constant in the model, PPFD equals to 200 μmolm−2 s−1. Based on the computational model, it was found that the implemented plants can positively influence the requirement for the total amount of ventilated air, the most significant effect is in the case of a low indoor environment quality, with the CO2 concentration of 1500 ppm, and a high supply air quality 410 p˙pm. The simulation also showed that compared to 2020, by the year 2100, it will be necessary to increase the ventilation of the indoor environment by 25.1% to ensure the same quality of the indoorenvironment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Polytechnica
Acta Polytechnica ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
12.50%
发文量
49
审稿时长
24 weeks
期刊介绍: Acta Polytechnica is a scientific journal published by CTU in Prague. The main title, Acta Polytechnica, is accompanied by the subtitle Journal of Advanced Engineering, which defines the scope of the journal more precisely - Acta Polytechnica covers a wide spectrum of engineering topics, physics and mathematics. Our aim is to be a high-quality multi-disciplinary journal publishing the results of basic research and also applied research. We place emphasis on the quality of all published papers. The journal should also serve as a bridge between basic research in natural sciences and applied research in all technical disciplines. The innovative research results published by young researchers or by postdoctoral fellows, and also the high-quality papers by researchers from the international scientific community, reflect the good position of CTU in the World University Rankings. We hope that you will find our journal interesting, and that it will serve as a valuable source of scientific information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信