Jiangming Liu, Shay B. Cohen, Mirella Lapata, Johan Bos
{"title":"通用语篇表示结构分析","authors":"Jiangming Liu, Shay B. Cohen, Mirella Lapata, Johan Bos","doi":"10.1162/coli_a_00406","DOIUrl":null,"url":null,"abstract":"Abstract We consider the task of crosslingual semantic parsing in the style of Discourse Representation Theory (DRT) where knowledge from annotated corpora in a resource-rich language is transferred via bitext to guide learning in other languages. We introduce 𝕌niversal Discourse Representation Theory (𝕌DRT), a variant of DRT that explicitly anchors semantic representations to tokens in the linguistic input. We develop a semantic parsing framework based on the Transformer architecture and utilize it to obtain semantic resources in multiple languages following two learning schemes. The many-to-one approach translates non-English text to English, and then runs a relatively accurate English parser on the translated text, while the one-to-many approach translates gold standard English to non-English text and trains multiple parsers (one per language) on the translations. Experimental results on the Parallel Meaning Bank show that our proposal outperforms strong baselines by a wide margin and can be used to construct (silver-standard) meaning banks for 99 languages.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"47 1","pages":"445-476"},"PeriodicalIF":3.7000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Universal Discourse Representation Structure Parsing\",\"authors\":\"Jiangming Liu, Shay B. Cohen, Mirella Lapata, Johan Bos\",\"doi\":\"10.1162/coli_a_00406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the task of crosslingual semantic parsing in the style of Discourse Representation Theory (DRT) where knowledge from annotated corpora in a resource-rich language is transferred via bitext to guide learning in other languages. We introduce 𝕌niversal Discourse Representation Theory (𝕌DRT), a variant of DRT that explicitly anchors semantic representations to tokens in the linguistic input. We develop a semantic parsing framework based on the Transformer architecture and utilize it to obtain semantic resources in multiple languages following two learning schemes. The many-to-one approach translates non-English text to English, and then runs a relatively accurate English parser on the translated text, while the one-to-many approach translates gold standard English to non-English text and trains multiple parsers (one per language) on the translations. Experimental results on the Parallel Meaning Bank show that our proposal outperforms strong baselines by a wide margin and can be used to construct (silver-standard) meaning banks for 99 languages.\",\"PeriodicalId\":55229,\"journal\":{\"name\":\"Computational Linguistics\",\"volume\":\"47 1\",\"pages\":\"445-476\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Linguistics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/coli_a_00406\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00406","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Abstract We consider the task of crosslingual semantic parsing in the style of Discourse Representation Theory (DRT) where knowledge from annotated corpora in a resource-rich language is transferred via bitext to guide learning in other languages. We introduce 𝕌niversal Discourse Representation Theory (𝕌DRT), a variant of DRT that explicitly anchors semantic representations to tokens in the linguistic input. We develop a semantic parsing framework based on the Transformer architecture and utilize it to obtain semantic resources in multiple languages following two learning schemes. The many-to-one approach translates non-English text to English, and then runs a relatively accurate English parser on the translated text, while the one-to-many approach translates gold standard English to non-English text and trains multiple parsers (one per language) on the translations. Experimental results on the Parallel Meaning Bank show that our proposal outperforms strong baselines by a wide margin and can be used to construct (silver-standard) meaning banks for 99 languages.
期刊介绍:
Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.