Xiaobin Li, Bing Li, Fangzhou Liu, Tingting Li, Xin Nie
{"title":"深度学习方法在数字岩石技术中的应用进展","authors":"Xiaobin Li, Bing Li, Fangzhou Liu, Tingting Li, Xin Nie","doi":"10.46690/ager.2023.04.02","DOIUrl":null,"url":null,"abstract":": Digital rock technology is becoming essential in reservoir engineering and petrophysics. Three-dimensional digital rock reconstruction, image resolution enhancement, image segmentation, and rock parameters prediction are all crucial steps in enabling the overall analysis of digital rocks to overcome the shortcomings and limitations of traditional methods. Artificial intelligence technology, which has started to play a significant role in many different fields, may provide a new direction for the development of digital rock technology. This work presents a systematic review of the deep learning methods that are being applied to tasks within digital rock analysis, including the reconstruction of digital rocks, high-resolution image acquisition, grayscale image segmentation","PeriodicalId":36335,"journal":{"name":"Advances in Geo-Energy Research","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Advances in the application of deep learning methods to digital rock technology\",\"authors\":\"Xiaobin Li, Bing Li, Fangzhou Liu, Tingting Li, Xin Nie\",\"doi\":\"10.46690/ager.2023.04.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Digital rock technology is becoming essential in reservoir engineering and petrophysics. Three-dimensional digital rock reconstruction, image resolution enhancement, image segmentation, and rock parameters prediction are all crucial steps in enabling the overall analysis of digital rocks to overcome the shortcomings and limitations of traditional methods. Artificial intelligence technology, which has started to play a significant role in many different fields, may provide a new direction for the development of digital rock technology. This work presents a systematic review of the deep learning methods that are being applied to tasks within digital rock analysis, including the reconstruction of digital rocks, high-resolution image acquisition, grayscale image segmentation\",\"PeriodicalId\":36335,\"journal\":{\"name\":\"Advances in Geo-Energy Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geo-Energy Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46690/ager.2023.04.02\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geo-Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46690/ager.2023.04.02","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Advances in the application of deep learning methods to digital rock technology
: Digital rock technology is becoming essential in reservoir engineering and petrophysics. Three-dimensional digital rock reconstruction, image resolution enhancement, image segmentation, and rock parameters prediction are all crucial steps in enabling the overall analysis of digital rocks to overcome the shortcomings and limitations of traditional methods. Artificial intelligence technology, which has started to play a significant role in many different fields, may provide a new direction for the development of digital rock technology. This work presents a systematic review of the deep learning methods that are being applied to tasks within digital rock analysis, including the reconstruction of digital rocks, high-resolution image acquisition, grayscale image segmentation
Advances in Geo-Energy Researchnatural geo-energy (oil, gas, coal geothermal, and gas hydrate)-Geotechnical Engineering and Engineering Geology
CiteScore
12.30
自引率
8.50%
发文量
63
审稿时长
2~3 weeks
期刊介绍:
Advances in Geo-Energy Research is an interdisciplinary and international periodical committed to fostering interaction and multidisciplinary collaboration among scientific communities worldwide, spanning both industry and academia. Our journal serves as a platform for researchers actively engaged in the diverse fields of geo-energy systems, providing an academic medium for the exchange of knowledge and ideas. Join us in advancing the frontiers of geo-energy research through collaboration and shared expertise.