Joaquim Castro Neto, P. Albuquerque, Yuri M. Barbosa, L. Fiscina
{"title":"一种新型后注浆微桩在热带土体中的性能试验研究","authors":"Joaquim Castro Neto, P. Albuquerque, Yuri M. Barbosa, L. Fiscina","doi":"10.28927/sr.2022.005322","DOIUrl":null,"url":null,"abstract":"This work aims to analyze the behavior of a new post-grouted micropile setup developed in tropical soil. Its main innovation is the use of high mechanical resistance steel pipes (N80 class) for drilling and as a structural component of the micropiles. The pipes have special manchette valves uniformly spaced to allow neat cement grout injection into the soil. Two instrumented micropiles with 0.3 m diameter (after injection) and lengths of 19.4 m and 21 m were installed at Experimental Site III of the University of Campinas (Unicamp). The geological profile of this site presents a sandy clay surface layer (porous and collapsible) followed by a layer of sandy silt (diabase residual soil). The piles were subjected to compressive slow maintained loading tests and were instrumented along their depth with strain gages. No geotechnical failure was observed during the load test. The maximum load achieved by the MC1 and MC2 micropiles were 2.210 kN and 2.470 kN, respectively. The load test data were extrapolated to estimate the ultimate geotechnical pile capacity. The extrapolated geotechnical failure load was above 2.500 kN for both micropiles and similar to those estimated by the Federal Highway Administration FHWA (2005) load capacity method. It was verified that (1) the pile material undergoes creep under stress above 25 MPa on the transversal section of the pile and (2) the debonding effect during the loading process. The micropiles showed higher values of skin friction compared with other piles installed in the same geological-geotechnical context (tropical soil).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the behavior of a new post-grouted micropile in a tropical soil\",\"authors\":\"Joaquim Castro Neto, P. Albuquerque, Yuri M. Barbosa, L. Fiscina\",\"doi\":\"10.28927/sr.2022.005322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to analyze the behavior of a new post-grouted micropile setup developed in tropical soil. Its main innovation is the use of high mechanical resistance steel pipes (N80 class) for drilling and as a structural component of the micropiles. The pipes have special manchette valves uniformly spaced to allow neat cement grout injection into the soil. Two instrumented micropiles with 0.3 m diameter (after injection) and lengths of 19.4 m and 21 m were installed at Experimental Site III of the University of Campinas (Unicamp). The geological profile of this site presents a sandy clay surface layer (porous and collapsible) followed by a layer of sandy silt (diabase residual soil). The piles were subjected to compressive slow maintained loading tests and were instrumented along their depth with strain gages. No geotechnical failure was observed during the load test. The maximum load achieved by the MC1 and MC2 micropiles were 2.210 kN and 2.470 kN, respectively. The load test data were extrapolated to estimate the ultimate geotechnical pile capacity. The extrapolated geotechnical failure load was above 2.500 kN for both micropiles and similar to those estimated by the Federal Highway Administration FHWA (2005) load capacity method. It was verified that (1) the pile material undergoes creep under stress above 25 MPa on the transversal section of the pile and (2) the debonding effect during the loading process. The micropiles showed higher values of skin friction compared with other piles installed in the same geological-geotechnical context (tropical soil).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2022.005322\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2022.005322","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental study on the behavior of a new post-grouted micropile in a tropical soil
This work aims to analyze the behavior of a new post-grouted micropile setup developed in tropical soil. Its main innovation is the use of high mechanical resistance steel pipes (N80 class) for drilling and as a structural component of the micropiles. The pipes have special manchette valves uniformly spaced to allow neat cement grout injection into the soil. Two instrumented micropiles with 0.3 m diameter (after injection) and lengths of 19.4 m and 21 m were installed at Experimental Site III of the University of Campinas (Unicamp). The geological profile of this site presents a sandy clay surface layer (porous and collapsible) followed by a layer of sandy silt (diabase residual soil). The piles were subjected to compressive slow maintained loading tests and were instrumented along their depth with strain gages. No geotechnical failure was observed during the load test. The maximum load achieved by the MC1 and MC2 micropiles were 2.210 kN and 2.470 kN, respectively. The load test data were extrapolated to estimate the ultimate geotechnical pile capacity. The extrapolated geotechnical failure load was above 2.500 kN for both micropiles and similar to those estimated by the Federal Highway Administration FHWA (2005) load capacity method. It was verified that (1) the pile material undergoes creep under stress above 25 MPa on the transversal section of the pile and (2) the debonding effect during the loading process. The micropiles showed higher values of skin friction compared with other piles installed in the same geological-geotechnical context (tropical soil).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.