Stavros Vouros, I. Goulos, C. Scullion, D. Nalianda, V. Pachidis
{"title":"叶尖涡流建模不确定性对直升机旋翼桨叶-涡流相互作用噪声预测的影响","authors":"Stavros Vouros, I. Goulos, C. Scullion, D. Nalianda, V. Pachidis","doi":"10.4050/jahs.66.012005","DOIUrl":null,"url":null,"abstract":"Free-wake models are routinely used in aeroacoustic analysis of helicopter rotors; however, their semiempiricism is accompanied with uncertainty related to the modeling of physical wake parameters. In some cases, analysts have to resort to empirical adaption of these parameters based\n on previous experimental evidence. This paper investigates the impact of inherent uncertainty in wake aerodynamic modeling on the robustness of helicopter rotor aeroacoustic analysis. A free-wake aeroelastic rotor model is employed to predict high-resolution unsteady airloads, including blade–vortex\n interactions. A rotor aeroacoustics model, based on integral solutions of the Ffowcs Williams–Hawkings equation, is utilized to calculate aerodynamic noise in the time domain. The individual analytical models are incorporated into an uncertainty analysis numerical procedure, implemented\n through nonintrusive Polynomial Chaos expansion. The potential sources of uncertainty in wake tip-vortex core growth modeling are identified and their impact on noise predictions is systematically quantified. When experimental data to adjust the tip-vortex core model are not available the\n uncertainty in acoustic pressure and noise impact at observers dominated by blade–vortex interaction noise can reach up to 25% and 3.50 dB, respectively. A set of generalized uncertainty maps is derived, for use as modeling guidelines for aeroacoustic analysis in the absence of the robust\n evidence necessary for calibration of semiempirical vortex core models.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Impact of Tip-Vortex Modeling Uncertainty on Helicopter Rotor Blade–Vortex Interaction Noise Prediction\",\"authors\":\"Stavros Vouros, I. Goulos, C. Scullion, D. Nalianda, V. Pachidis\",\"doi\":\"10.4050/jahs.66.012005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Free-wake models are routinely used in aeroacoustic analysis of helicopter rotors; however, their semiempiricism is accompanied with uncertainty related to the modeling of physical wake parameters. In some cases, analysts have to resort to empirical adaption of these parameters based\\n on previous experimental evidence. This paper investigates the impact of inherent uncertainty in wake aerodynamic modeling on the robustness of helicopter rotor aeroacoustic analysis. A free-wake aeroelastic rotor model is employed to predict high-resolution unsteady airloads, including blade–vortex\\n interactions. A rotor aeroacoustics model, based on integral solutions of the Ffowcs Williams–Hawkings equation, is utilized to calculate aerodynamic noise in the time domain. The individual analytical models are incorporated into an uncertainty analysis numerical procedure, implemented\\n through nonintrusive Polynomial Chaos expansion. The potential sources of uncertainty in wake tip-vortex core growth modeling are identified and their impact on noise predictions is systematically quantified. When experimental data to adjust the tip-vortex core model are not available the\\n uncertainty in acoustic pressure and noise impact at observers dominated by blade–vortex interaction noise can reach up to 25% and 3.50 dB, respectively. A set of generalized uncertainty maps is derived, for use as modeling guidelines for aeroacoustic analysis in the absence of the robust\\n evidence necessary for calibration of semiempirical vortex core models.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.66.012005\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.66.012005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Impact of Tip-Vortex Modeling Uncertainty on Helicopter Rotor Blade–Vortex Interaction Noise Prediction
Free-wake models are routinely used in aeroacoustic analysis of helicopter rotors; however, their semiempiricism is accompanied with uncertainty related to the modeling of physical wake parameters. In some cases, analysts have to resort to empirical adaption of these parameters based
on previous experimental evidence. This paper investigates the impact of inherent uncertainty in wake aerodynamic modeling on the robustness of helicopter rotor aeroacoustic analysis. A free-wake aeroelastic rotor model is employed to predict high-resolution unsteady airloads, including blade–vortex
interactions. A rotor aeroacoustics model, based on integral solutions of the Ffowcs Williams–Hawkings equation, is utilized to calculate aerodynamic noise in the time domain. The individual analytical models are incorporated into an uncertainty analysis numerical procedure, implemented
through nonintrusive Polynomial Chaos expansion. The potential sources of uncertainty in wake tip-vortex core growth modeling are identified and their impact on noise predictions is systematically quantified. When experimental data to adjust the tip-vortex core model are not available the
uncertainty in acoustic pressure and noise impact at observers dominated by blade–vortex interaction noise can reach up to 25% and 3.50 dB, respectively. A set of generalized uncertainty maps is derived, for use as modeling guidelines for aeroacoustic analysis in the absence of the robust
evidence necessary for calibration of semiempirical vortex core models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.