可数态移位空间上微扰势的Bowen方程的渐近解

IF 1.1 4区 数学 Q1 MATHEMATICS
Haruyoshi Tanaka
{"title":"可数态移位空间上微扰势的Bowen方程的渐近解","authors":"Haruyoshi Tanaka","doi":"10.4171/jfg/128","DOIUrl":null,"url":null,"abstract":"We study the asymptotic solution of the equation of the pressure function $s\\mapsto P(s\\varphi(\\epsilon,\\cdot)+\\psi(\\epsilon,\\cdot))$ for perturbed potentials $\\varphi(\\epsilon,\\cdot)$ and $\\psi(\\epsilon,\\cdot)$ defined on the shift space with countable state space. In our main result, we give a sufficient condition for the solution $s=s(\\epsilon)$ of $P(s\\varphi(\\epsilon,\\cdot)+\\psi(\\epsilon,\\cdot))=0$ to have the $n$-order asymptotic expansion for the small parameter $\\epsilon$. In addition, we also obtain the case where the order of the expansion of the solution $s=s(\\epsilon)$ is less than the order of the expansion of the perturbed potentials. Our results can be applied to problems concerning asymptotic behaviors of Hausdorff dimensions obtained from Bowen formula: conformal graph directed Markov systems, an infinite graph directed systems with contractive infinitesimal similitudes mappings, and other concrete examples.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Asymptotic solution of Bowen equation for perturbed potentials on shift spaces with countable states\",\"authors\":\"Haruyoshi Tanaka\",\"doi\":\"10.4171/jfg/128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the asymptotic solution of the equation of the pressure function $s\\\\mapsto P(s\\\\varphi(\\\\epsilon,\\\\cdot)+\\\\psi(\\\\epsilon,\\\\cdot))$ for perturbed potentials $\\\\varphi(\\\\epsilon,\\\\cdot)$ and $\\\\psi(\\\\epsilon,\\\\cdot)$ defined on the shift space with countable state space. In our main result, we give a sufficient condition for the solution $s=s(\\\\epsilon)$ of $P(s\\\\varphi(\\\\epsilon,\\\\cdot)+\\\\psi(\\\\epsilon,\\\\cdot))=0$ to have the $n$-order asymptotic expansion for the small parameter $\\\\epsilon$. In addition, we also obtain the case where the order of the expansion of the solution $s=s(\\\\epsilon)$ is less than the order of the expansion of the perturbed potentials. Our results can be applied to problems concerning asymptotic behaviors of Hausdorff dimensions obtained from Bowen formula: conformal graph directed Markov systems, an infinite graph directed systems with contractive infinitesimal similitudes mappings, and other concrete examples.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/128\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/128","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

研究了具有可数状态空间的位移空间上定义的扰动势$\varphi(\epsilon,\cdot)$和$\psi(\epsilon,\cdot)$的压力函数$s\mapsto P(s\varphi(\epsilon,\cdot)+\psi(\epsilon,\cdot))$方程的渐近解。在我们的主要结果中,我们给出了$P(s\varphi(\epsilon,\cdot)+\psi(\epsilon,\cdot))=0$的解$s=s(\epsilon)$对于小参数$\epsilon$具有$n$阶渐近展开式的一个充分条件。此外,我们还得到了解$s=s(\epsilon)$的展开阶数小于摄动势的展开阶数的情况。我们的结果可以应用于由Bowen公式得到的关于Hausdorff维数渐近行为的问题:共形图有向马尔可夫系统,具有压缩无穷小相似映射的无限图有向系统,以及其他具体的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic solution of Bowen equation for perturbed potentials on shift spaces with countable states
We study the asymptotic solution of the equation of the pressure function $s\mapsto P(s\varphi(\epsilon,\cdot)+\psi(\epsilon,\cdot))$ for perturbed potentials $\varphi(\epsilon,\cdot)$ and $\psi(\epsilon,\cdot)$ defined on the shift space with countable state space. In our main result, we give a sufficient condition for the solution $s=s(\epsilon)$ of $P(s\varphi(\epsilon,\cdot)+\psi(\epsilon,\cdot))=0$ to have the $n$-order asymptotic expansion for the small parameter $\epsilon$. In addition, we also obtain the case where the order of the expansion of the solution $s=s(\epsilon)$ is less than the order of the expansion of the perturbed potentials. Our results can be applied to problems concerning asymptotic behaviors of Hausdorff dimensions obtained from Bowen formula: conformal graph directed Markov systems, an infinite graph directed systems with contractive infinitesimal similitudes mappings, and other concrete examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信