{"title":"甘蔗渣与南宁贫煤、石油焦共混物燃烧特性的实验研究","authors":"Ge Xiong, Yong Zhang, Baosheng Jin","doi":"10.1515/ijcre-2022-0179","DOIUrl":null,"url":null,"abstract":"Abstract Multi-fuel operation of the coal-fired boiler is considered as a promising option for boiler reformation to reduce carbon emissions while recycling solid waste. In this work, co-combustion characteristics of sugarcane bagasse, Nanning meager-lean coal and petroleum coke under different conditions were investigated in detail. And the interaction between raw materials was analyzed. Finally, the kinetic parameters were estimated by using the first-order response model. The results show that differences in petroleum coke content affect the appearance of weight loss peaks in the DTG curve. When the proportion of sugarcane bagasse is between 40 and 60%, the ignition and burnout characteristic indexes are particularly sensitive to variations in sugarcane bagasse content. Additionally, the interaction between the three raw materials is promoted as the proportion of petroleum coke is less than 40%. The kinetic analysis suggests that the increase of heating rate is conducive to the precipitation of volatiles, but there is an optimal heating rate for the fixed carbon combustion stage. The change of particle size combination has little effect on the activation energy of the volatile fraction combustion stage. This study provides a reference to ensure the stable and high-efficient operation of the coal-fired boilers during the multi-fuel combustion.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"21 1","pages":"879 - 894"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the combustion characteristics of blends of sugarcane bagasse, Nanning meager-lean coal and petroleum coke\",\"authors\":\"Ge Xiong, Yong Zhang, Baosheng Jin\",\"doi\":\"10.1515/ijcre-2022-0179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Multi-fuel operation of the coal-fired boiler is considered as a promising option for boiler reformation to reduce carbon emissions while recycling solid waste. In this work, co-combustion characteristics of sugarcane bagasse, Nanning meager-lean coal and petroleum coke under different conditions were investigated in detail. And the interaction between raw materials was analyzed. Finally, the kinetic parameters were estimated by using the first-order response model. The results show that differences in petroleum coke content affect the appearance of weight loss peaks in the DTG curve. When the proportion of sugarcane bagasse is between 40 and 60%, the ignition and burnout characteristic indexes are particularly sensitive to variations in sugarcane bagasse content. Additionally, the interaction between the three raw materials is promoted as the proportion of petroleum coke is less than 40%. The kinetic analysis suggests that the increase of heating rate is conducive to the precipitation of volatiles, but there is an optimal heating rate for the fixed carbon combustion stage. The change of particle size combination has little effect on the activation energy of the volatile fraction combustion stage. This study provides a reference to ensure the stable and high-efficient operation of the coal-fired boilers during the multi-fuel combustion.\",\"PeriodicalId\":51069,\"journal\":{\"name\":\"International Journal of Chemical Reactor Engineering\",\"volume\":\"21 1\",\"pages\":\"879 - 894\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Reactor Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijcre-2022-0179\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0179","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Experimental study on the combustion characteristics of blends of sugarcane bagasse, Nanning meager-lean coal and petroleum coke
Abstract Multi-fuel operation of the coal-fired boiler is considered as a promising option for boiler reformation to reduce carbon emissions while recycling solid waste. In this work, co-combustion characteristics of sugarcane bagasse, Nanning meager-lean coal and petroleum coke under different conditions were investigated in detail. And the interaction between raw materials was analyzed. Finally, the kinetic parameters were estimated by using the first-order response model. The results show that differences in petroleum coke content affect the appearance of weight loss peaks in the DTG curve. When the proportion of sugarcane bagasse is between 40 and 60%, the ignition and burnout characteristic indexes are particularly sensitive to variations in sugarcane bagasse content. Additionally, the interaction between the three raw materials is promoted as the proportion of petroleum coke is less than 40%. The kinetic analysis suggests that the increase of heating rate is conducive to the precipitation of volatiles, but there is an optimal heating rate for the fixed carbon combustion stage. The change of particle size combination has little effect on the activation energy of the volatile fraction combustion stage. This study provides a reference to ensure the stable and high-efficient operation of the coal-fired boilers during the multi-fuel combustion.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.