基于ANFIS的测井数据分析:一种模糊神经网络方法

IF 1 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY
Ying Cui, Qi Guo, Jacqueline P. Leighton, Man-Wai Chu
{"title":"基于ANFIS的测井数据分析:一种模糊神经网络方法","authors":"Ying Cui, Qi Guo, Jacqueline P. Leighton, Man-Wai Chu","doi":"10.1080/15305058.2018.1551225","DOIUrl":null,"url":null,"abstract":"This study explores the use of the Adaptive Neuro-Fuzzy Inference System (ANFIS), a neuro-fuzzy approach, to analyze the log data of technology-based assessments to extract relevant features of student problem-solving processes, and develop and refine a set of fuzzy logic rules that could be used to interpret student performance. The log data that record student response processes while solving a science simulation task were analyzed with ANFIS. Results indicate the ANFIS analysis could generate and refine a set of fuzzy rules that shed lights on the process of how students solve the simulation task. We conclude the article by discussing the advantages of combining human judgments with the learning capacity of ANFIS for log data analysis and outlining the limitations of the current study and areas of future research.","PeriodicalId":46615,"journal":{"name":"International Journal of Testing","volume":"20 1","pages":"78 - 96"},"PeriodicalIF":1.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15305058.2018.1551225","citationCount":"4","resultStr":"{\"title\":\"Log Data Analysis with ANFIS: A Fuzzy Neural Network Approach\",\"authors\":\"Ying Cui, Qi Guo, Jacqueline P. Leighton, Man-Wai Chu\",\"doi\":\"10.1080/15305058.2018.1551225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the use of the Adaptive Neuro-Fuzzy Inference System (ANFIS), a neuro-fuzzy approach, to analyze the log data of technology-based assessments to extract relevant features of student problem-solving processes, and develop and refine a set of fuzzy logic rules that could be used to interpret student performance. The log data that record student response processes while solving a science simulation task were analyzed with ANFIS. Results indicate the ANFIS analysis could generate and refine a set of fuzzy rules that shed lights on the process of how students solve the simulation task. We conclude the article by discussing the advantages of combining human judgments with the learning capacity of ANFIS for log data analysis and outlining the limitations of the current study and areas of future research.\",\"PeriodicalId\":46615,\"journal\":{\"name\":\"International Journal of Testing\",\"volume\":\"20 1\",\"pages\":\"78 - 96\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15305058.2018.1551225\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15305058.2018.1551225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15305058.2018.1551225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

本研究探索使用神经模糊方法自适应神经模糊推理系统(ANFIS)分析基于技术的评估日志数据,以提取学生问题解决过程的相关特征,并开发和完善一套可用于解释学生表现的模糊逻辑规则。利用ANFIS分析了学生在解决科学模拟任务时的反应过程日志数据。结果表明,ANFIS分析可以生成并细化一组模糊规则,这些规则揭示了学生如何解决模拟任务的过程。最后,我们讨论了将人工判断与ANFIS的学习能力结合起来进行测井数据分析的优势,并概述了当前研究的局限性和未来研究的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Log Data Analysis with ANFIS: A Fuzzy Neural Network Approach
This study explores the use of the Adaptive Neuro-Fuzzy Inference System (ANFIS), a neuro-fuzzy approach, to analyze the log data of technology-based assessments to extract relevant features of student problem-solving processes, and develop and refine a set of fuzzy logic rules that could be used to interpret student performance. The log data that record student response processes while solving a science simulation task were analyzed with ANFIS. Results indicate the ANFIS analysis could generate and refine a set of fuzzy rules that shed lights on the process of how students solve the simulation task. We conclude the article by discussing the advantages of combining human judgments with the learning capacity of ANFIS for log data analysis and outlining the limitations of the current study and areas of future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Testing
International Journal of Testing SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.60
自引率
11.80%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信