Xiaotao Xu, Xi He, A. Bollinger, Myung‐Geun Han, Yimei Zhu, Xiaoyan Shi, I. Božović
{"title":"一种探测La2−xSrxCuO4-LaSrAlO4-La2−xrxCuO4三层结界面的方法","authors":"Xiaotao Xu, Xi He, A. Bollinger, Myung‐Geun Han, Yimei Zhu, Xiaoyan Shi, I. Božović","doi":"10.3390/condmat8010021","DOIUrl":null,"url":null,"abstract":"C-axis trilayer cuprate Josephson junctions are essential for basic science and digital circuit applications of high-temperature superconductors. We present a method for probing the interface perfection in La2−xSrxCuO4 (LSCO)-LaSrAlO4 (LSAO)-La2−xSrxCuO4 trilayer junctions. A series of LSCO-LSAO superlattices with atomically smooth surfaces and sharp interfaces were grown by the atomic-layer-by-layer molecular beam epitaxy (ALL-MBE) technique. We have systematically varied the thickness of LSCO and LSAO layers with monolayer precision. By studying the mutual inductance and electrical transport in these superlattices, we detect the non-superconducting (“dead”) layers at the interfaces and quantify their thicknesses. Our results indicate that two optimally doped LSCO monolayers just above and below the one monolayer LSAO barrier are no longer superconducting, rendering the actual barrier thickness of five monolayers. Next, we have shown that introducing a protective highly-overdoped LSCO layer reduces the thickness of dead layers by one or two monolayers.","PeriodicalId":10665,"journal":{"name":"Condensed Matter","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Method to Probe the Interfaces in La2−xSrxCuO4-LaSrAlO4-La2−xSrxCuO4 Trilayer Junctions\",\"authors\":\"Xiaotao Xu, Xi He, A. Bollinger, Myung‐Geun Han, Yimei Zhu, Xiaoyan Shi, I. Božović\",\"doi\":\"10.3390/condmat8010021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"C-axis trilayer cuprate Josephson junctions are essential for basic science and digital circuit applications of high-temperature superconductors. We present a method for probing the interface perfection in La2−xSrxCuO4 (LSCO)-LaSrAlO4 (LSAO)-La2−xSrxCuO4 trilayer junctions. A series of LSCO-LSAO superlattices with atomically smooth surfaces and sharp interfaces were grown by the atomic-layer-by-layer molecular beam epitaxy (ALL-MBE) technique. We have systematically varied the thickness of LSCO and LSAO layers with monolayer precision. By studying the mutual inductance and electrical transport in these superlattices, we detect the non-superconducting (“dead”) layers at the interfaces and quantify their thicknesses. Our results indicate that two optimally doped LSCO monolayers just above and below the one monolayer LSAO barrier are no longer superconducting, rendering the actual barrier thickness of five monolayers. Next, we have shown that introducing a protective highly-overdoped LSCO layer reduces the thickness of dead layers by one or two monolayers.\",\"PeriodicalId\":10665,\"journal\":{\"name\":\"Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/condmat8010021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/condmat8010021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
A Method to Probe the Interfaces in La2−xSrxCuO4-LaSrAlO4-La2−xSrxCuO4 Trilayer Junctions
C-axis trilayer cuprate Josephson junctions are essential for basic science and digital circuit applications of high-temperature superconductors. We present a method for probing the interface perfection in La2−xSrxCuO4 (LSCO)-LaSrAlO4 (LSAO)-La2−xSrxCuO4 trilayer junctions. A series of LSCO-LSAO superlattices with atomically smooth surfaces and sharp interfaces were grown by the atomic-layer-by-layer molecular beam epitaxy (ALL-MBE) technique. We have systematically varied the thickness of LSCO and LSAO layers with monolayer precision. By studying the mutual inductance and electrical transport in these superlattices, we detect the non-superconducting (“dead”) layers at the interfaces and quantify their thicknesses. Our results indicate that two optimally doped LSCO monolayers just above and below the one monolayer LSAO barrier are no longer superconducting, rendering the actual barrier thickness of five monolayers. Next, we have shown that introducing a protective highly-overdoped LSCO layer reduces the thickness of dead layers by one or two monolayers.