实验室规模太阳对流炉系统的模拟实验评估

IF 2.1 4区 工程技术 Q3 ENERGY & FUELS
V. Kumar, L. Chandra, S. Mukhopadhyay, R. Shekhar
{"title":"实验室规模太阳对流炉系统的模拟实验评估","authors":"V. Kumar, L. Chandra, S. Mukhopadhyay, R. Shekhar","doi":"10.1115/1.4056623","DOIUrl":null,"url":null,"abstract":"\n Electricity and gas-based heat treatment of metal is an energy-intensive process. To mitigate the use of such high-grade energy the concept of an open volumetric air receiver-based solar convective furnace (SCF) system is developed for the heat treatment of metal. This system includes an in-situ waste heat recovery mechanism. This paper presents a Joule heating-based, controlled, experimental assessment of a laboratory-scale, retrofitted, SCF system for generating benchmark data. The reported measurements illustrate the heat transfer for (a) the charging and discharging process of thermal energy storage and (b) the two-stage heat treatment of metal with an in-situ heat recovery process. The overall system efficiency, including heat recovery, heat storage, and heat transfer, is found to be 24%. Thus, the SCF system can serve as a viable alternative to an electrical energy-based heat treatment furnace.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulated Experimental Assessment of a Laboratory-Scale Solar Convective Furnace System\",\"authors\":\"V. Kumar, L. Chandra, S. Mukhopadhyay, R. Shekhar\",\"doi\":\"10.1115/1.4056623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Electricity and gas-based heat treatment of metal is an energy-intensive process. To mitigate the use of such high-grade energy the concept of an open volumetric air receiver-based solar convective furnace (SCF) system is developed for the heat treatment of metal. This system includes an in-situ waste heat recovery mechanism. This paper presents a Joule heating-based, controlled, experimental assessment of a laboratory-scale, retrofitted, SCF system for generating benchmark data. The reported measurements illustrate the heat transfer for (a) the charging and discharging process of thermal energy storage and (b) the two-stage heat treatment of metal with an in-situ heat recovery process. The overall system efficiency, including heat recovery, heat storage, and heat transfer, is found to be 24%. Thus, the SCF system can serve as a viable alternative to an electrical energy-based heat treatment furnace.\",\"PeriodicalId\":17124,\"journal\":{\"name\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056623\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056623","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

金属的电和气基热处理是一个能源密集型的过程。为了减少这种高级能源的使用,开发了一种基于开式容积空气接收器的太阳能对流炉(SCF)系统的概念,用于金属的热处理。该系统包括一个原位废热回收机制。本文介绍了一种基于焦耳加热的、可控的、实验评估的实验室规模的、改造的、用于生成基准数据的SCF系统。报告的测量说明了(a)热能储存的充放电过程和(b)金属的原位热回收过程的两阶段热处理的传热。包括热回收、蓄热和传热在内的整个系统效率为24%。因此,SCF系统可以作为基于电能的热处理炉的可行替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulated Experimental Assessment of a Laboratory-Scale Solar Convective Furnace System
Electricity and gas-based heat treatment of metal is an energy-intensive process. To mitigate the use of such high-grade energy the concept of an open volumetric air receiver-based solar convective furnace (SCF) system is developed for the heat treatment of metal. This system includes an in-situ waste heat recovery mechanism. This paper presents a Joule heating-based, controlled, experimental assessment of a laboratory-scale, retrofitted, SCF system for generating benchmark data. The reported measurements illustrate the heat transfer for (a) the charging and discharging process of thermal energy storage and (b) the two-stage heat treatment of metal with an in-situ heat recovery process. The overall system efficiency, including heat recovery, heat storage, and heat transfer, is found to be 24%. Thus, the SCF system can serve as a viable alternative to an electrical energy-based heat treatment furnace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
26.10%
发文量
98
审稿时长
6.0 months
期刊介绍: The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信