(Γ,G)$(\γ,G)$-丛的局部类型和准水平群方案

IF 1.5 1区 数学 Q1 MATHEMATICS
Chiara Damiolini, Jiuzu Hong
{"title":"(Γ,G)$(\\γ,G)$-丛的局部类型和准水平群方案","authors":"Chiara Damiolini, Jiuzu Hong","doi":"10.1112/plms.12544","DOIUrl":null,"url":null,"abstract":"Let G$G$ be a simple algebraic group over an algebraically closed field k$k$ . Let Γ$\\Gamma$ be a finite group acting on G$G$ . We classify and compute the local types of (Γ,G)$(\\Gamma , G)$ ‐bundles on a smooth projective Γ$\\Gamma$ ‐curve in terms of the first nonabelian group cohomology of the stabilizer groups at the tamely ramified points with coefficients in G$G$ . When char(k)=0$\\text{char}(k)=0$ , we prove that any generically simply connected parahoric Bruhat–Tits group scheme can arise from a (Γ,Gad)$(\\Gamma ,G_{\\mathrm{ad}})$ ‐bundle. We also prove a local version of this theorem, that is, parahoric group schemes over the formal disc arise from constant group schemes via tamely ramified coverings.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local types of (Γ,G)$(\\\\Gamma ,G)$ ‐bundles and parahoric group schemes\",\"authors\":\"Chiara Damiolini, Jiuzu Hong\",\"doi\":\"10.1112/plms.12544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G$G$ be a simple algebraic group over an algebraically closed field k$k$ . Let Γ$\\\\Gamma$ be a finite group acting on G$G$ . We classify and compute the local types of (Γ,G)$(\\\\Gamma , G)$ ‐bundles on a smooth projective Γ$\\\\Gamma$ ‐curve in terms of the first nonabelian group cohomology of the stabilizer groups at the tamely ramified points with coefficients in G$G$ . When char(k)=0$\\\\text{char}(k)=0$ , we prove that any generically simply connected parahoric Bruhat–Tits group scheme can arise from a (Γ,Gad)$(\\\\Gamma ,G_{\\\\mathrm{ad}})$ ‐bundle. We also prove a local version of this theorem, that is, parahoric group schemes over the formal disc arise from constant group schemes via tamely ramified coverings.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12544\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12544","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G$G$是代数闭域k$k$上的一个简单代数群。设Γ$\Gamma$是作用于G$G$的有限群。我们根据系数为G$G$的温和分支点上的稳定群的第一个非贝利亚群上同调,对光滑投影Γ$\Gamma$曲线上的(Γ,G)$(\Gamma,G,G)$-丛的局部类型进行了分类和计算。当char(k)=0$\text{char}(k)=0$时,我们证明了任何一般简单连接的准水平Bruhat–Tits群方案都可以由(Γ,Gad)$(\Gamma,G_{\mathrm{ad}})$丛产生。我们还证明了这个定理的一个局部版本,即形式圆盘上的准水平群方案是由常群方案通过温和的分支覆盖产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local types of (Γ,G)$(\Gamma ,G)$ ‐bundles and parahoric group schemes
Let G$G$ be a simple algebraic group over an algebraically closed field k$k$ . Let Γ$\Gamma$ be a finite group acting on G$G$ . We classify and compute the local types of (Γ,G)$(\Gamma , G)$ ‐bundles on a smooth projective Γ$\Gamma$ ‐curve in terms of the first nonabelian group cohomology of the stabilizer groups at the tamely ramified points with coefficients in G$G$ . When char(k)=0$\text{char}(k)=0$ , we prove that any generically simply connected parahoric Bruhat–Tits group scheme can arise from a (Γ,Gad)$(\Gamma ,G_{\mathrm{ad}})$ ‐bundle. We also prove a local version of this theorem, that is, parahoric group schemes over the formal disc arise from constant group schemes via tamely ramified coverings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信