{"title":"非线性期望下Hindy-Huang-Kreps偏好下的最优消费","authors":"Giorgio Ferrari, Hanwu Li, F. Riedel","doi":"10.1017/apr.2022.5","DOIUrl":null,"url":null,"abstract":"Abstract We study an intertemporal consumption and portfolio choice problem under Knightian uncertainty in which agent’s preferences exhibit local intertemporal substitution. We also allow for market frictions in the sense that the pricing functional is nonlinear. We prove existence and uniqueness of the optimal consumption plan, and we derive a set of sufficient first-order conditions for optimality. With the help of a backward equation, we are able to determine the structure of optimal consumption plans. We obtain explicit solutions in a stationary setting in which the financial market has different risk premia for short and long positions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal consumption with Hindy–Huang–Kreps preferences under nonlinear expectations\",\"authors\":\"Giorgio Ferrari, Hanwu Li, F. Riedel\",\"doi\":\"10.1017/apr.2022.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study an intertemporal consumption and portfolio choice problem under Knightian uncertainty in which agent’s preferences exhibit local intertemporal substitution. We also allow for market frictions in the sense that the pricing functional is nonlinear. We prove existence and uniqueness of the optimal consumption plan, and we derive a set of sufficient first-order conditions for optimality. With the help of a backward equation, we are able to determine the structure of optimal consumption plans. We obtain explicit solutions in a stationary setting in which the financial market has different risk premia for short and long positions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2022.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2022.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal consumption with Hindy–Huang–Kreps preferences under nonlinear expectations
Abstract We study an intertemporal consumption and portfolio choice problem under Knightian uncertainty in which agent’s preferences exhibit local intertemporal substitution. We also allow for market frictions in the sense that the pricing functional is nonlinear. We prove existence and uniqueness of the optimal consumption plan, and we derive a set of sufficient first-order conditions for optimality. With the help of a backward equation, we are able to determine the structure of optimal consumption plans. We obtain explicit solutions in a stationary setting in which the financial market has different risk premia for short and long positions.