Liu Yang, Jiachen Wang, Shengli Yang, Tao Li, WeiJie Wei, Zheng Li, Fei Liu
{"title":"长壁放顶煤特厚煤层松散矸石厚度对顶煤回收率的影响","authors":"Liu Yang, Jiachen Wang, Shengli Yang, Tao Li, WeiJie Wei, Zheng Li, Fei Liu","doi":"10.1007/s40571-023-00567-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper uses PFC<sup>2D</sup> software to carry out DEM numerical simulations of coal caving, calculates the top coal recovery under the same coal seam thickness and different rock layer thicknesses, analyzes the influence of the rock layer thickness on the top coal caving law in two different stages, and explains the necessity of a thick rock layer and the optimal thickness of the rock layer. The results show that as the thickness of the loose gangue layer increases from 1 to 8?m, the recovery ratio of top coal increases from 84 to 96%, showing zigzag growth. The lateral diameter of the drawing body gradually increases. Due to the particularity of the coal caving method, in the subsequent coal caving stage, the uneven thickness of the top rock layer causes the direction of the drawing body to change, and the existence of a coal ridge causes the displacement field on the right side of the rock to be larger than that on the left side above the drawing opening. This leads to different sizes of the left and right secondary coal ridges. Through simple geometric relationship analysis, this paper explains the principle that gangue particles intrude into coal seams due to the weakening of rock constraints and an increase in the free movement of coal particles. This further demonstrates the necessity of a loose and thick rock layer. The optimum thickness of the rock layer and the relationship between the thickness of coal and rock and parameters of coal caving are calculated. Finally, the necessity of a thick rock layer is extended to three typical top coal caving methods to verify the universality of this necessity.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"10 5","pages":"1281 - 1294"},"PeriodicalIF":2.8000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40571-023-00567-0.pdf","citationCount":"2","resultStr":"{\"title\":\"Influence of loose gangue thickness on top coal recovery ratio in extrathick coal seam in longwall top coal caving\",\"authors\":\"Liu Yang, Jiachen Wang, Shengli Yang, Tao Li, WeiJie Wei, Zheng Li, Fei Liu\",\"doi\":\"10.1007/s40571-023-00567-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper uses PFC<sup>2D</sup> software to carry out DEM numerical simulations of coal caving, calculates the top coal recovery under the same coal seam thickness and different rock layer thicknesses, analyzes the influence of the rock layer thickness on the top coal caving law in two different stages, and explains the necessity of a thick rock layer and the optimal thickness of the rock layer. The results show that as the thickness of the loose gangue layer increases from 1 to 8?m, the recovery ratio of top coal increases from 84 to 96%, showing zigzag growth. The lateral diameter of the drawing body gradually increases. Due to the particularity of the coal caving method, in the subsequent coal caving stage, the uneven thickness of the top rock layer causes the direction of the drawing body to change, and the existence of a coal ridge causes the displacement field on the right side of the rock to be larger than that on the left side above the drawing opening. This leads to different sizes of the left and right secondary coal ridges. Through simple geometric relationship analysis, this paper explains the principle that gangue particles intrude into coal seams due to the weakening of rock constraints and an increase in the free movement of coal particles. This further demonstrates the necessity of a loose and thick rock layer. The optimum thickness of the rock layer and the relationship between the thickness of coal and rock and parameters of coal caving are calculated. Finally, the necessity of a thick rock layer is extended to three typical top coal caving methods to verify the universality of this necessity.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"10 5\",\"pages\":\"1281 - 1294\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40571-023-00567-0.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-023-00567-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-023-00567-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Influence of loose gangue thickness on top coal recovery ratio in extrathick coal seam in longwall top coal caving
This paper uses PFC2D software to carry out DEM numerical simulations of coal caving, calculates the top coal recovery under the same coal seam thickness and different rock layer thicknesses, analyzes the influence of the rock layer thickness on the top coal caving law in two different stages, and explains the necessity of a thick rock layer and the optimal thickness of the rock layer. The results show that as the thickness of the loose gangue layer increases from 1 to 8?m, the recovery ratio of top coal increases from 84 to 96%, showing zigzag growth. The lateral diameter of the drawing body gradually increases. Due to the particularity of the coal caving method, in the subsequent coal caving stage, the uneven thickness of the top rock layer causes the direction of the drawing body to change, and the existence of a coal ridge causes the displacement field on the right side of the rock to be larger than that on the left side above the drawing opening. This leads to different sizes of the left and right secondary coal ridges. Through simple geometric relationship analysis, this paper explains the principle that gangue particles intrude into coal seams due to the weakening of rock constraints and an increase in the free movement of coal particles. This further demonstrates the necessity of a loose and thick rock layer. The optimum thickness of the rock layer and the relationship between the thickness of coal and rock and parameters of coal caving are calculated. Finally, the necessity of a thick rock layer is extended to three typical top coal caving methods to verify the universality of this necessity.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.