{"title":"基于递归图的卷积神经网络改进室内地磁场指纹","authors":"M. Abid, G. Lefebvre","doi":"10.1080/17489725.2020.1856428","DOIUrl":null,"url":null,"abstract":"ABSTRACT Geomagnetic field fingerprinting is gradually substituting Bluetooth and WiFi fingerprinting since the magnetic field is ubiquitous and independent of any infrastructure. Many studies have used Convolutional Neural Networks (CNNs) to develop indoor positioning systems. Most of these networks use actual magnetic values to build fingerprints. The main source of diminished accuracy is that these CNNs cannot solve the distribution issue of the same magnetic field values. To remedy this limitation, there is a recent interest in applying CNNs to sequences of actual and past data, but no comparative studies have shown the performance contribution of this alternative. In this paper, we propose a CNN-based magnetic fingerprinting system using Recurrence Plots (RPs) as sequence fingerprints. To fairly compare the proposed system with an existing solution treating instantaneous magnetic data, the same real-world data in an indoor environment are used. Testing results show location classification accuracies of 94.92% and 95.46% for the cases of using one RP and three RPs, respectively. As for the localisation error, results show that sequence pattern recognition results in at least a seven-fold decrease in mean distance error.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17489725.2020.1856428","citationCount":"3","resultStr":"{\"title\":\"Improving indoor geomagnetic field fingerprinting using recurrence plot-based convolutional neural networks\",\"authors\":\"M. Abid, G. Lefebvre\",\"doi\":\"10.1080/17489725.2020.1856428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Geomagnetic field fingerprinting is gradually substituting Bluetooth and WiFi fingerprinting since the magnetic field is ubiquitous and independent of any infrastructure. Many studies have used Convolutional Neural Networks (CNNs) to develop indoor positioning systems. Most of these networks use actual magnetic values to build fingerprints. The main source of diminished accuracy is that these CNNs cannot solve the distribution issue of the same magnetic field values. To remedy this limitation, there is a recent interest in applying CNNs to sequences of actual and past data, but no comparative studies have shown the performance contribution of this alternative. In this paper, we propose a CNN-based magnetic fingerprinting system using Recurrence Plots (RPs) as sequence fingerprints. To fairly compare the proposed system with an existing solution treating instantaneous magnetic data, the same real-world data in an indoor environment are used. Testing results show location classification accuracies of 94.92% and 95.46% for the cases of using one RP and three RPs, respectively. As for the localisation error, results show that sequence pattern recognition results in at least a seven-fold decrease in mean distance error.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17489725.2020.1856428\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17489725.2020.1856428\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17489725.2020.1856428","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving indoor geomagnetic field fingerprinting using recurrence plot-based convolutional neural networks
ABSTRACT Geomagnetic field fingerprinting is gradually substituting Bluetooth and WiFi fingerprinting since the magnetic field is ubiquitous and independent of any infrastructure. Many studies have used Convolutional Neural Networks (CNNs) to develop indoor positioning systems. Most of these networks use actual magnetic values to build fingerprints. The main source of diminished accuracy is that these CNNs cannot solve the distribution issue of the same magnetic field values. To remedy this limitation, there is a recent interest in applying CNNs to sequences of actual and past data, but no comparative studies have shown the performance contribution of this alternative. In this paper, we propose a CNN-based magnetic fingerprinting system using Recurrence Plots (RPs) as sequence fingerprints. To fairly compare the proposed system with an existing solution treating instantaneous magnetic data, the same real-world data in an indoor environment are used. Testing results show location classification accuracies of 94.92% and 95.46% for the cases of using one RP and three RPs, respectively. As for the localisation error, results show that sequence pattern recognition results in at least a seven-fold decrease in mean distance error.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.