Nam Ho-Nguyen, F. Kılınç-Karzan, Simge Küçükyavuz, Dabeen Lee
{"title":"Wasserstein歧义下具有左手边不确定性的分布鲁棒机会约束规划的强公式","authors":"Nam Ho-Nguyen, F. Kılınç-Karzan, Simge Küçükyavuz, Dabeen Lee","doi":"10.1287/ijoo.2022.0083","DOIUrl":null,"url":null,"abstract":"Distributionally robust chance-constrained programs (DR-CCPs) over Wasserstein ambiguity sets exhibit attractive out-of-sample performance and admit big-M–based mixed-integer programming reformulations with conic constraints. However, the resulting formulations often suffer from scalability issues as problem size increases. To address this shortcoming, we derive stronger formulations that scale well with respect to the problem size. Our focus is on ambiguity sets under the so-called left-hand side uncertainty, where the uncertain parameters affect the coefficients of the decision variables in the linear inequalities defining the safety sets. The interaction between the uncertain parameters and the variable coefficients in the safety set definition causes challenges in strengthening the original big-M formulations. By exploiting the connection between nominal chance-constrained programs and DR-CCP, we obtain strong formulations with significant enhancements. In particular, through this connection, we derive a linear number of valid inequalities, which can be immediately added to the formulations to obtain improved formulations in the original space of variables. In addition, we suggest a quantile-based strengthening procedure that allows us to reduce the big-M coefficients drastically. Furthermore, based on this procedure, we propose an exponential class of inequalities that can be separated efficiently within a branch-and-cut framework. The quantile-based strengthening procedure can be expensive. Therefore, for the special case of covering and packing type problems, we identify an efficient scheme to carry out this procedure. We demonstrate the computational efficacy of our proposed formulations on two classes of problems, namely stochastic portfolio optimization and resource planning.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Strong Formulations for Distributionally Robust Chance-Constrained Programs with Left-Hand Side Uncertainty Under Wasserstein Ambiguity\",\"authors\":\"Nam Ho-Nguyen, F. Kılınç-Karzan, Simge Küçükyavuz, Dabeen Lee\",\"doi\":\"10.1287/ijoo.2022.0083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributionally robust chance-constrained programs (DR-CCPs) over Wasserstein ambiguity sets exhibit attractive out-of-sample performance and admit big-M–based mixed-integer programming reformulations with conic constraints. However, the resulting formulations often suffer from scalability issues as problem size increases. To address this shortcoming, we derive stronger formulations that scale well with respect to the problem size. Our focus is on ambiguity sets under the so-called left-hand side uncertainty, where the uncertain parameters affect the coefficients of the decision variables in the linear inequalities defining the safety sets. The interaction between the uncertain parameters and the variable coefficients in the safety set definition causes challenges in strengthening the original big-M formulations. By exploiting the connection between nominal chance-constrained programs and DR-CCP, we obtain strong formulations with significant enhancements. In particular, through this connection, we derive a linear number of valid inequalities, which can be immediately added to the formulations to obtain improved formulations in the original space of variables. In addition, we suggest a quantile-based strengthening procedure that allows us to reduce the big-M coefficients drastically. Furthermore, based on this procedure, we propose an exponential class of inequalities that can be separated efficiently within a branch-and-cut framework. The quantile-based strengthening procedure can be expensive. Therefore, for the special case of covering and packing type problems, we identify an efficient scheme to carry out this procedure. We demonstrate the computational efficacy of our proposed formulations on two classes of problems, namely stochastic portfolio optimization and resource planning.\",\"PeriodicalId\":73382,\"journal\":{\"name\":\"INFORMS journal on optimization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS journal on optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/ijoo.2022.0083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2022.0083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strong Formulations for Distributionally Robust Chance-Constrained Programs with Left-Hand Side Uncertainty Under Wasserstein Ambiguity
Distributionally robust chance-constrained programs (DR-CCPs) over Wasserstein ambiguity sets exhibit attractive out-of-sample performance and admit big-M–based mixed-integer programming reformulations with conic constraints. However, the resulting formulations often suffer from scalability issues as problem size increases. To address this shortcoming, we derive stronger formulations that scale well with respect to the problem size. Our focus is on ambiguity sets under the so-called left-hand side uncertainty, where the uncertain parameters affect the coefficients of the decision variables in the linear inequalities defining the safety sets. The interaction between the uncertain parameters and the variable coefficients in the safety set definition causes challenges in strengthening the original big-M formulations. By exploiting the connection between nominal chance-constrained programs and DR-CCP, we obtain strong formulations with significant enhancements. In particular, through this connection, we derive a linear number of valid inequalities, which can be immediately added to the formulations to obtain improved formulations in the original space of variables. In addition, we suggest a quantile-based strengthening procedure that allows us to reduce the big-M coefficients drastically. Furthermore, based on this procedure, we propose an exponential class of inequalities that can be separated efficiently within a branch-and-cut framework. The quantile-based strengthening procedure can be expensive. Therefore, for the special case of covering and packing type problems, we identify an efficient scheme to carry out this procedure. We demonstrate the computational efficacy of our proposed formulations on two classes of problems, namely stochastic portfolio optimization and resource planning.