可持续发展和提高使用金属复合材料的开裂工艺

IF 0.125
Abimbola G. Olaremu, Williams R. Adedoyin, Odunayo T. Ore, Adedapo O. Adeola
{"title":"可持续发展和提高使用金属复合材料的开裂工艺","authors":"Abimbola G. Olaremu,&nbsp;Williams R. Adedoyin,&nbsp;Odunayo T. Ore,&nbsp;Adedapo O. Adeola","doi":"10.1007/s13203-021-00263-1","DOIUrl":null,"url":null,"abstract":"<p>Metallic composites represent a vital class of materials that has gained increased attention in crude oil processing as well as the production of biofuel from other sources in recent times. Several catalytic materials have been reported in the literature for catalytic cracking, particularly, of crude oil. This review seeks to provide a comprehensive overview of existing and emerging methods/technologies such as metal–organic frameworks (MOFs), metal–matrix composites (MMCs), and catalytic support materials, to bridge information gaps toward sustainable advancement in catalysis for petrochemical processes. There is an increase in industrial and environmental concern emanating from the sulphur levels of oils, hence the need to develop more efficient catalysts in the hydrotreatment (HDS and HDN) processes, and combating the challenge of catalyst poisoning and deactivation; in a bid to improving the overall quality of oils and sustainable use of catalyst. Structural improvement, high thermal stability, enhanced cracking potential, and environmental sustainability represent the various benefits accrued to the use of metallic composites as opposed to conventional catalysts employed in catalytic cracking processes.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 1","pages":"1 - 18"},"PeriodicalIF":0.1250,"publicationDate":"2021-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00263-1","citationCount":"6","resultStr":"{\"title\":\"Sustainable development and enhancement of cracking processes using metallic composites\",\"authors\":\"Abimbola G. Olaremu,&nbsp;Williams R. Adedoyin,&nbsp;Odunayo T. Ore,&nbsp;Adedapo O. Adeola\",\"doi\":\"10.1007/s13203-021-00263-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metallic composites represent a vital class of materials that has gained increased attention in crude oil processing as well as the production of biofuel from other sources in recent times. Several catalytic materials have been reported in the literature for catalytic cracking, particularly, of crude oil. This review seeks to provide a comprehensive overview of existing and emerging methods/technologies such as metal–organic frameworks (MOFs), metal–matrix composites (MMCs), and catalytic support materials, to bridge information gaps toward sustainable advancement in catalysis for petrochemical processes. There is an increase in industrial and environmental concern emanating from the sulphur levels of oils, hence the need to develop more efficient catalysts in the hydrotreatment (HDS and HDN) processes, and combating the challenge of catalyst poisoning and deactivation; in a bid to improving the overall quality of oils and sustainable use of catalyst. Structural improvement, high thermal stability, enhanced cracking potential, and environmental sustainability represent the various benefits accrued to the use of metallic composites as opposed to conventional catalysts employed in catalytic cracking processes.</p>\",\"PeriodicalId\":472,\"journal\":{\"name\":\"Applied Petrochemical Research\",\"volume\":\"11 1\",\"pages\":\"1 - 18\"},\"PeriodicalIF\":0.1250,\"publicationDate\":\"2021-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13203-021-00263-1\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Petrochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13203-021-00263-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-021-00263-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

金属复合材料是一类重要的材料,近年来在原油加工以及从其他来源生产生物燃料方面受到越来越多的关注。文献中已经报道了几种催化材料用于催化裂化,特别是原油。本文旨在全面概述现有的和新兴的方法/技术,如金属有机框架(MOFs)、金属基复合材料(MMCs)和催化支撑材料,以弥合信息差距,实现石化过程催化的可持续发展。由于油中的硫含量对工业和环境的关注有所增加,因此需要在加氢处理(HDS和HDN)过程中开发更有效的催化剂,并应对催化剂中毒和失活的挑战;为了提高油品的整体质量和催化剂的可持续使用。与传统催化剂相比,金属复合材料在催化裂化过程中具有结构改进、高热稳定性、增强裂解潜力和环境可持续性等诸多优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sustainable development and enhancement of cracking processes using metallic composites

Sustainable development and enhancement of cracking processes using metallic composites

Metallic composites represent a vital class of materials that has gained increased attention in crude oil processing as well as the production of biofuel from other sources in recent times. Several catalytic materials have been reported in the literature for catalytic cracking, particularly, of crude oil. This review seeks to provide a comprehensive overview of existing and emerging methods/technologies such as metal–organic frameworks (MOFs), metal–matrix composites (MMCs), and catalytic support materials, to bridge information gaps toward sustainable advancement in catalysis for petrochemical processes. There is an increase in industrial and environmental concern emanating from the sulphur levels of oils, hence the need to develop more efficient catalysts in the hydrotreatment (HDS and HDN) processes, and combating the challenge of catalyst poisoning and deactivation; in a bid to improving the overall quality of oils and sustainable use of catalyst. Structural improvement, high thermal stability, enhanced cracking potential, and environmental sustainability represent the various benefits accrued to the use of metallic composites as opposed to conventional catalysts employed in catalytic cracking processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Petrochemical Research
Applied Petrochemical Research ENGINEERING, CHEMICAL-
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信