电离层总电子含量的局部增减对2018年4月20日地磁风暴的响应

IF 1 Q3 GEOCHEMISTRY & GEOPHYSICS
C. Sotomayor-Beltran
{"title":"电离层总电子含量的局部增减对2018年4月20日地磁风暴的响应","authors":"C. Sotomayor-Beltran","doi":"10.1155/2018/1986306","DOIUrl":null,"url":null,"abstract":"A moderate geomagnetic storm occurred on April 20, 2018. Using vertical total electron content (VTEC) maps provided by the Center for Orbit Determination in Europe, ionospheric responses to the geomagnetic storm could be identified in generated two-dimensional differential VTEC maps. During the day of the storm the enhancement of the equatorial ionization anomaly (EIA), product of the super-fountain effect was identified. A localized TEC enhancement (LTE) was also observed to the south of the EIA on April 20, 2018. It was also possible to visualize this LTE in a longitudinal section of the EIA as a third crest. The maximum increment of VTEC for the LTE was 204%. This LTE is quite unique because it happened during the expected solar cycle 24 and 25 minimum, and according to a previous study no LTE observation could be done for the last solar two-cycle minimum. The origin of the observed LTE is suggested to be partly product of the super-fountain effect. Finally, a localized TEC decrement (LTD) was observed towards the end of the day, April 20, 2018. Because this LTD consisted in the disappearance of the northern and southern crests of the EIA and this occurred during the recovery phase of the geomagnetic storm, it can be suggested that the LTD origin is due to the westward disturbance electric field. This mechanism was put forward by a past study that also analyzed the responses to a geomagnetic storm (the 2015 St. Patrick’s day storm), being one of the responses the inhibition of both crests of the EIA.","PeriodicalId":45602,"journal":{"name":"International Journal of Geophysics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/1986306","citationCount":"3","resultStr":"{\"title\":\"Localized Increment and Decrement in the Total Electron Content of the Ionosphere as a Response to the April 20, 2018, Geomagnetic Storm\",\"authors\":\"C. Sotomayor-Beltran\",\"doi\":\"10.1155/2018/1986306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A moderate geomagnetic storm occurred on April 20, 2018. Using vertical total electron content (VTEC) maps provided by the Center for Orbit Determination in Europe, ionospheric responses to the geomagnetic storm could be identified in generated two-dimensional differential VTEC maps. During the day of the storm the enhancement of the equatorial ionization anomaly (EIA), product of the super-fountain effect was identified. A localized TEC enhancement (LTE) was also observed to the south of the EIA on April 20, 2018. It was also possible to visualize this LTE in a longitudinal section of the EIA as a third crest. The maximum increment of VTEC for the LTE was 204%. This LTE is quite unique because it happened during the expected solar cycle 24 and 25 minimum, and according to a previous study no LTE observation could be done for the last solar two-cycle minimum. The origin of the observed LTE is suggested to be partly product of the super-fountain effect. Finally, a localized TEC decrement (LTD) was observed towards the end of the day, April 20, 2018. Because this LTD consisted in the disappearance of the northern and southern crests of the EIA and this occurred during the recovery phase of the geomagnetic storm, it can be suggested that the LTD origin is due to the westward disturbance electric field. This mechanism was put forward by a past study that also analyzed the responses to a geomagnetic storm (the 2015 St. Patrick’s day storm), being one of the responses the inhibition of both crests of the EIA.\",\"PeriodicalId\":45602,\"journal\":{\"name\":\"International Journal of Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/1986306\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/1986306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/1986306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

2018年4月20日,一场中度地磁风暴发生。利用欧洲轨道确定中心提供的垂直总电子含量(VTEC)图,可以在生成的二维差分VTEC图中识别电离层对地磁暴的响应。在风暴期间,发现了赤道电离异常的增强,这是超级喷泉效应的产物。2018年4月20日,在EIA以南也观察到了局部TEC增强(LTE)。还可以在EIA的纵向截面中将该LTE可视化为第三波峰。LTE的VTEC的最大增量为204%。这种LTE是非常独特的,因为它发生在预期的最小太阳周期24和25期间,并且根据之前的研究,无法对最后一个最小太阳周期进行LTE观测。观测到的LTE的起源被认为是超级喷泉效应的部分产物。最后,在2018年4月20日当天结束时,观察到局部TEC减少(LTD)。由于这种LTD由EIA的南北波峰消失组成,并且发生在地磁暴的恢复阶段,因此可以认为LTD的起源是由于向西扰动电场。这一机制是由过去的一项研究提出的,该研究还分析了对地磁风暴(2015年圣帕特里克节风暴)的反应,这是抑制EIA两个波峰的反应之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localized Increment and Decrement in the Total Electron Content of the Ionosphere as a Response to the April 20, 2018, Geomagnetic Storm
A moderate geomagnetic storm occurred on April 20, 2018. Using vertical total electron content (VTEC) maps provided by the Center for Orbit Determination in Europe, ionospheric responses to the geomagnetic storm could be identified in generated two-dimensional differential VTEC maps. During the day of the storm the enhancement of the equatorial ionization anomaly (EIA), product of the super-fountain effect was identified. A localized TEC enhancement (LTE) was also observed to the south of the EIA on April 20, 2018. It was also possible to visualize this LTE in a longitudinal section of the EIA as a third crest. The maximum increment of VTEC for the LTE was 204%. This LTE is quite unique because it happened during the expected solar cycle 24 and 25 minimum, and according to a previous study no LTE observation could be done for the last solar two-cycle minimum. The origin of the observed LTE is suggested to be partly product of the super-fountain effect. Finally, a localized TEC decrement (LTD) was observed towards the end of the day, April 20, 2018. Because this LTD consisted in the disappearance of the northern and southern crests of the EIA and this occurred during the recovery phase of the geomagnetic storm, it can be suggested that the LTD origin is due to the westward disturbance electric field. This mechanism was put forward by a past study that also analyzed the responses to a geomagnetic storm (the 2015 St. Patrick’s day storm), being one of the responses the inhibition of both crests of the EIA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Geophysics
International Journal of Geophysics GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.50
自引率
0.00%
发文量
12
审稿时长
21 weeks
期刊介绍: International Journal of Geophysics is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of theoretical, observational, applied, and computational geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信