{"title":"用于光子计数辐射成像系统的PECL逻辑纳秒电压比较器的设计","authors":"Huaxia Zhang, Yuewen Sun, Zijia Chen, Zhifang Wu","doi":"10.1155/2023/6810882","DOIUrl":null,"url":null,"abstract":"In this paper, a nanosecond voltage comparator with PECL logic for a photon-counting radiation imaging system is presented. To realize a high-speed comparison of four gamma detector channels in a limited board space, quad comparators MAX9602 with PECL logic are chosen. Each of the four channels is coupled with a PECL to CMOS converter ICS508, which exports CMOS logic data for later use in an FPGA. Simulated findings for cobalt-60 with intensities ranging from 30 Ci to 300 Ci show little count loss caused by using a comparator and indicate ideal propagation delays at all source intensities. While in the laboratory test using a PCB-level system, signals with pulse width less than 3 ns might be dropped, and dispersion of propagation delay occurs. Despite these, the performance is still satisfactory and can meet the requirements of practical applications, as demonstrated by an improved result of 0.9% in the contrast indicator model. Further studies to optimize the circuit design can be conducted to gain improvement.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Nanosecond Voltage Comparator with PECL Logic for a Photon-Counting Radiation Imaging System Application\",\"authors\":\"Huaxia Zhang, Yuewen Sun, Zijia Chen, Zhifang Wu\",\"doi\":\"10.1155/2023/6810882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a nanosecond voltage comparator with PECL logic for a photon-counting radiation imaging system is presented. To realize a high-speed comparison of four gamma detector channels in a limited board space, quad comparators MAX9602 with PECL logic are chosen. Each of the four channels is coupled with a PECL to CMOS converter ICS508, which exports CMOS logic data for later use in an FPGA. Simulated findings for cobalt-60 with intensities ranging from 30 Ci to 300 Ci show little count loss caused by using a comparator and indicate ideal propagation delays at all source intensities. While in the laboratory test using a PCB-level system, signals with pulse width less than 3 ns might be dropped, and dispersion of propagation delay occurs. Despite these, the performance is still satisfactory and can meet the requirements of practical applications, as demonstrated by an improved result of 0.9% in the contrast indicator model. Further studies to optimize the circuit design can be conducted to gain improvement.\",\"PeriodicalId\":21629,\"journal\":{\"name\":\"Science and Technology of Nuclear Installations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Nuclear Installations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6810882\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/6810882","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Design of a Nanosecond Voltage Comparator with PECL Logic for a Photon-Counting Radiation Imaging System Application
In this paper, a nanosecond voltage comparator with PECL logic for a photon-counting radiation imaging system is presented. To realize a high-speed comparison of four gamma detector channels in a limited board space, quad comparators MAX9602 with PECL logic are chosen. Each of the four channels is coupled with a PECL to CMOS converter ICS508, which exports CMOS logic data for later use in an FPGA. Simulated findings for cobalt-60 with intensities ranging from 30 Ci to 300 Ci show little count loss caused by using a comparator and indicate ideal propagation delays at all source intensities. While in the laboratory test using a PCB-level system, signals with pulse width less than 3 ns might be dropped, and dispersion of propagation delay occurs. Despite these, the performance is still satisfactory and can meet the requirements of practical applications, as demonstrated by an improved result of 0.9% in the contrast indicator model. Further studies to optimize the circuit design can be conducted to gain improvement.
期刊介绍:
Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.